Graph Neural Networks for Vulnerability Detection: A
Counterfactual Explanation

Zhaoyang Chu’

School of Computer Science and
Technology, Huazhong University of
Science and Technology, China
chuzhaoyang@hust.edu.cn

Yang Wu*

School of Computer Science and
Technology, Huazhong University of
Science and Technology, China
wuyang_emily@hust.edu.cn

Guandong Xu
School of Computer Science,
University of Technology Sydney,
Australia
guandong.xu@uts.edu.au

ABSTRACT

Vulnerability detection is crucial for ensuring the security and relia-
bility of software systems. Recently, Graph Neural Networks (GNNs)
have emerged as a prominent code embedding approach for vulner-
ability detection, owing to their ability to capture the underlying
semantic structure of source code. However, GNNs face significant
challenges in explainability due to their inherently black-box nature.
To this end, several factual reasoning-based explainers have been
proposed. These explainers provide explanations for the predic-
tions made by GNNs by analyzing the key features that contribute
to the outcomes. We argue that these factual reasoning-based ex-
planations cannot answer critical what-if questions: “What would
happen to the GNN’s decision if we were to alter the code graph into
alternative structures?” Inspired by advancements of counterfac-
tual reasoning in artificial intelligence, we propose CFEXPLAINER, a
novel counterfactual explainer for GNN-based vulnerability detec-
tion. Unlike factual reasoning-based explainers, CFEXPLAINER seeks
the minimal perturbation to the input code graph that leads to a
change in the prediction, thereby addressing the what-if questions

*Also with National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
Huazhong University of Science and Technology, Wuhan, 430074, China.

Yao Wan is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3652136

Yao Wan'* T
School of Computer Science and
Technology, Huazhong University of
Science and Technology, China
wanyao@hust.edu.cn

Hongyu Zhang
School of Big Data and Software
Engineering, Chongqing University,
China
hyzhang@cqu.edu.cn

Qian Li
School of Electrical Engineering,
Computing and Mathematical
Sciences, Curtin University, Australia
qli@curtin.edu.au

Yulei Sui
School of Computer Science and
Engineering, University of New South
Wales, Australia
y.sui@unsw.edu.au

Hai Jin*

School of Computer Science and

Technology, Huazhong University of

Science and Technology, China
hjin@hust.edu.cn

for vulnerability detection. We term this perturbation a counterfac-
tual explanation, which can pinpoint the root causes of the detected
vulnerability and furnish valuable insights for developers to un-
dertake appropriate actions for fixing the vulnerability. Extensive
experiments on four GNN-based vulnerability detection models
demonstrate the effectiveness of CFEXPLAINER over existing state-
of-the-art factual reasoning-based explainers.

CCS CONCEPTS

« Software and its engineering — Software reliability.

KEYWORDS

Vulnerability detection, graph neural networks, model explainabil-
ity, counterfactual reasoning, what-if analysis.

ACM Reference Format:

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui,
Guandong Xu, and Hai Jin. 2024. Graph Neural Networks for Vulnerability
Detection: A Counterfactual Explanation. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
'24), September 16—20, 2024, Vienna, Austria. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3650212.3652136

1 INTRODUCTION

Software vulnerabilities, which expose weaknesses in a program,
present a significant risk to data integrity, user privacy, and overall
cybersecurity [29, 31, 66]. As of now, the Common Vulnerabilities
and Exposures (CVE) [18] has reported tens of thousands of software
vulnerabilities annually. Thus, vulnerability detection, which aims
to automatically identify potentially vulnerable code, plays a pivotal
role in ensuring the security and reliability of software.

Existing efforts on vulnerability detection primarily fall within
two main categories: static analysis-based approaches [16, 45, 49]
and deep learning-based approaches [20, 30, 31, 66]. Traditional

https://doi.org/10.1145/3650212.3652136
https://doi.org/10.1145/3650212.3652136

ISSTA °24, September 16-20, 2024, Vienna, Austria

CVE-2016-10190 Vulnerability Detection

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

! i]
E static int http_read_stream(@ ‘ : ;\Open :
i URLContext *h, uint8_t *buf, int size) ! $ V i 7 o !
: ! y my written code is (@j |
! HITPContext *s = h->priv_data; i Vulnerable [detected as vulnerable?} (K2 I
H ! black-box v
' ' GNNs |
1 if (s->chunksize >= 0) { I et !
: if (!s->chunksize) { @ : X
b . TNy Ay T N N L e
i s->chunksize = strtoll(line, NULL, 16); @ | | !
| . ;
: . P Factual Reasoning ® !
| |
E size = FFMIN(size, s->chunksize); ® | | E & [The selected sub-graph (D, ®, @, and ®) is the key G ® |
i 3] @“1 feature that contributed to the detected vulnerability. Y !
| . !
i |
I int len; I !
. len = s->buf_end - s->buf_ptr; ® ! | i
' i !'| Analysis of What-If |
1 if (len > @) {] !
| if (len > size) len = size; ® ! | The chunksize, passed from @, causes a miscalculation E
i memepy(but gsazbusIpteateny; ' \'_%1 of size at ®, which in turn triggers the vulnerability at @ !
E 3 else { ! E a® \ and @. Thus, please inspect the value of chunksize in @. !
| |
i . !
. len = ffurl_read(s->hd, buf, size); ® ! '
! - ! N
i T !
| b) . !
. ' !
e b !
1 1 1 !

Figure 1: Illustration of factual reasoning-based explanation (right middle) and what-if analysis (right bottom).

static analysis-based approaches (e.g., SVF [45] and Infer [1]) rely on
human experts to manually define specific rules for detecting vul-
nerabilities. Recently, deep learning-based approaches, exemplified
by pioneering works such as VulDeePecker [31] and Devign [66],
have made remarkable strides, largely attributed to their capacity to
learn comprehensive code representations, thereby enhancing the
detection capabilities across diverse vulnerabilities. Among these
approaches, Graph Neural Networks (GNNs) [6, 7, 20, 29, 66] have
recently attracted substantial attention, owing to their capacity to
capture intricate structural information of code, e.g., syntax trees,
control flows, and data flows.

Despite the significant progress made by GNNs in vulnerability
detection, existing detection systems suffer from the explainability
issues due to the black-box and complicated nature of deep neural
networks. Given a predicted result, developers are often confused
by the following question: “Why my code is detected as vulnerable?”
From our investigation, existing studies [15, 21, 29] on explainable
vulnerability detection are typically factual reasoning-based explain-
ers. The core idea of these explainers is to identify key features in
the input data (e.g., sub-graphs in the code graph) that contribute to
the final predictions. The selected features are commonly regarded
as factual explanations, as they derive from empirical input data
and serve as factual evidence for particular outcomes.

Here, we contend that those factual reasoning-based explana-
tions, which merely delineate the features or sub-graphs contribut-
ing to the identified vulnerability, are not convincing enough. One
reason is that developers remain uncertain about the actual in-
fluence of the code segments, which constitute the explanation
sub-graph, on the detection result. In other words, the factual
reasoning-based explanations cannot answer “What would hap-
pen to the detection system’s decision if we were to alter these code
segments into alternative structures?” This perspective of what-if is
often associated with a human cognitive activity that imagines other
possible scenarios for events that have already happened [39]. This

motivates us to develop a novel paradigm for analyzing detected
vulnerabilities in source code - what-if analysis. In our cases, what-
if analysis explores hypothetical code instances with alternative
structures. This approach aims to identify potential changes that
would fix the vulnerability, thereby providing a better explanation
of the root causes and factors contributing to its existence.

Why What-If Analysis? A Motivating Example. We use Fig-
ure 1 as an example to illustrate the advantage of analyzing what-if
in explaining vulnerability detection compared to factual reasoning-
based explanations. This example involves a heap-based buffer
overflow vulnerability in the FFmpeg project', reported by CVE-
2016-10190%, which allows remote Web servers to execute arbitrary
code via a negative chunk size in an HTTP response. Specifically,
this vulnerability arises from misuse of the strtoll function for
parsing chunksize from HTTP responses into int64_t format,
without properly validating for negative values (). Then, a nega-
tive chunksize can result in an erroneous calculation in the FFMIN
function, producing a negative size for buffer operations ((5)). This
negative size potentially triggers out-of-bounds write operations,
ultimately leading to a heap buffer overflow ((7) and (®). In this
example, the vulnerability detection system parses the code snippet
into a semantic code graph (e.g., Abstract Syntax Tree (AST), Control
Flow Graph (CFG), Data Flow Graph (DFG), or Program Dependency
Graph (PDG)). Here, without loss of generality, we consider the
parsed code graph as a DFG for better illustration.

The vulnerability detection systems employ GNNs to model the
DFG and yield a prediction outcome that classifies the input code
snippet as vulnerable. To explain the prediction of “vulnerable”,
the factual reasoning-based explanation identifies a compact sub-
graph in the code graph (D, @, @, and (®) as the key feature
that contributes to the detected vulnerability. This allows develop-
ers to recognize segments (7) and (8), which involve buffer write

!https://github.com/FFmpeg/FFmpeg
https://www.cvedetails.com/cve/CVE-2016-10190

https://github.com/FFmpeg/FFmpeg
https://www.cvedetails.com/cve/CVE-2016-10190

Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation

operations ((D and (5) are not involved), as potentially vulnera-
ble blocks. However, the explanation provided is inadequate for
guiding code rectification to alter the detection system’s decision,
leaving developers to manually check variables such as len, size,
and chunksize to identify the actual cause of the vulnerability.

In contrast, to investigate the context of vulnerability occur-
rences, what-if analysis proactively and iteratively explores di-
verse hypothetical code structures (e.g., (a), (b), (c), and (d)), by
inputting each into the detection system to observe varied predic-
tion outcomes. Taking structure (a) as an example, it is evident that
removing the data-flow dependencies ®— (@) and &—@®), while
retaining ®— (@), leads to a prediction of “non-vulnerable”. It sug-
gests that calculating size at (5) may be a vulnerability source,
while the computation of len at 6 does not contribute to the vul-
nerability. Through iterative exploration for subsequent structures
(b), (c), and (d), what-if analysis functions as an “optimization” pro-
cess, eventually “converging” to a minimal change that alters the
detection system’s decision, i.e., only removing)— @) in structure
(d). The minimal change highlights the data flow ®—(@) as the
root cause, which passes potentially incorrect chunksize, result-
ing in a miscalculation of size at (5) and in turn triggering the
buffer overflow at (7) and (8). Consequently, developers receive an
actionable insight, i.e., directly inspecting the value of chunksize
at @ for potential errors. Overall, we can conclude that the what-if
analysis essentially simulates the interactions between developers
and the vulnerability detection system during debugging, methodi-
cally identifying the root causes of the detected vulnerabilities and
guiding developers to effective solutions.

Our Solution and Contributions. Recent advances of counterfac-
tual reasoning in artificial intelligence [3, 26, 27, 33, 47, 48, 54, 60]
shed light on the possibility of applying what-if analysis for GNN-
based vulnerability detection. A counterfactual instance represents
an instance that, while closely similar to the original instance, is
classified by the black-box model in a different class. Thus, counter-
factual reasoning aims to identify minimal changes in input features
that can alter outcomes, thereby addressing the what-if questions.

Building upon this motivation, we propose CFEXPLAINER, the
first explainer to introduce counterfactual reasoning for enhanc-
ing the explainability of GNNs in vulnerability detection. Given a
code instance, CFEXPLAINER aims to identify a minimal perturba-
tion to the code graph input that can flip the detection system’s
prediction from “vulnerable” to “non-vulnerable”. CFEXPLAINER
formulates the search problem for counterfactual perturbations
as an edge mask learning task, which learns a differentiable edge
mask to represent the perturbation. Based on the differentiable edge
mask, CFEXPLAINER builds a counterfactual reasoning framework
to generate insightful counterfactual explanations for the detection
results. Extensive experiments on four representative GNNs for
vulnerability detection (i.e., GCN, GGNN, GIN, and GraphConv)
validate the effectiveness of our proposed CFEXPLAINER, both in
terms of vulnerability-oriented and model-oriented metrics.

The key contributions of this paper are as follows.

o To the best of our knowledge, we are the first to discuss the
what-if question and introduce the perspective of counterfactual
reasoning for GNN-based vulnerability detection.

ISSTA °24, September 16-20, 2024, Vienna, Austria

e We propose a counterfactual reasoning-based explainer, named
CFEXPLAINER, to generate explanations for the decisions made
by the GNN-based vulnerability detection systems, which can
help developers discover the vulnerability causes.

e We conduct extensive experiments on four GNN-based vulnera-
bility detection systems to validate the effectiveness of CFEx-
PLAINER. Our results demonstrate that CFEXPLAINER outper-
forms the state-of-the-art factual reasoning-based explainers.

2 BACKGROUND

In this section, we begin by introducing essential preliminary knowl-
edge necessary for a better understanding of our model. Subse-
quently, we present a mathematical formulation of the problem
under study in this paper.

2.1 GNN-based Vulnerability Detection Model

Suppose that we have a set of N code snippets D = {C1,Ca,...,CN},
and each code snippet Cy. is associated with a ground-truth la-
bel Y € {0, 1}, which categorizes the code snippet as either non-
vulnerable (0) or vulnerable (1). The goal of vulnerability detection
is to learn a mapping function f(-) that assigns a code snippet to
either a non-vulnerable or vulnerable label.

Current deep learning-based approaches follow a fundamen-
tal pipeline wherein the semantics of the source code are embed-
ded into a hidden vector, which is then fed into a classifier. Re-
cently, GNNs have been designed to capture the semantic structures
of source code, e.g., ASTs, CFGs, DFGs, and PDGs. Given a code
graph Gy of Cy., GNN typically follows a two-step message-passing
scheme (i.e., aggregate and update) at each layer [to learn node
representations for Gg.

Firstly, GNN generates an intermediate representation mg for
each node i in Gy by aggregating information from its neighbor
nodes, denoted by N (i), using an aggregation function:

m% = Aggregation({hﬁ._1 |jeN@HYD), (1)

where h!~! denotes the representation of node j in the previous
layer. Subsequently, the GNN updates the intermediate representa-
tion mg for each node i via an update function:

h! = Update(ml, hl™1). ()

For a L-layer GNN, the final representation of the node i is hl.L. To
obtain a graph representation hy for the code graph Gy, a readout
function (e.g., graph mean pooling) is applied to integrate all the
node representations of G:

hy, = Readout({h}}). 3)

Finally, the graph representation hy is fed into a classifier (e.g.
Multi-Layer Perception (MLP)) followed by a Softmax function to
calculate the probability distribution of non-vulnerable and vulner-
able classes, as follows:

P(c | G¢) = Softmax(MLP(hy)), (4)

where P(c | Gy) is the predicted probability of the code snippet
Cy. that belongs to each class in {0, 1}, i.e., Cy is vulnerable or not.

ISSTA °24, September 16-20, 2024, Vienna, Austria

The GNN model can be optimized by minimizing the binary cross-
entropy loss between the predicted probabilities and the ground-
truth labels, allowing it to learn from both non-vulnerable and
vulnerable code instances in the training set.

As the model trained, in the testing phase, when presented with
a code snippet Cx accompanied by its code graph Gy, the trained
GNN model f(-) is employed to compute the predicted probability
P(c | Gg) for each class. The resulting estimated label Yy, for Cy. is
determined by selecting the class with the highest probability:

Vi = argmax P(c | Gi) . (5)
ce{0,1}

Investigated GNNs for Vulnerability Detection. In this study,
we investigate four widely used GNNs for vulnerability detection.
These GNNs employ various implementations of the Aggregation(-)
and Update(-) functions to capture structural code information for
vulnerability detection.
> Graph Convolutional Network (GCN) [25] generalizes the idea
of convolutional neural networks to graphs. It aggregates neighbor
node representations by summing them and utilizes an MLP to
update the aggregated node representations.
> Gated Graph Neural Network (GGNN) [28] utilizes a Gated
Recurrent Unit [8] to control information flow through edges when
updating the aggregated node representations.
> Graph Isomorphism Network (GIN) [56] introduces the con-
cept of graph isomorphism to ensure permutation invariance. It
employs a graph isomorphism operator to update the aggregated
node representations.
> GraphConv [36] incorporates higher-order graph structures at
multiple scales to enhance GNN’s expressive power.

2.2 Model Explainability: The Problem

Suppose that we have a trained GNN model f(-) and its prediction
Y} on the target code Cy. represented by a code graph Gy. In this
paper, we explore the explainability of GNNs within a black-box
setting, recognized as a more challenging context for exploring
model interpretability, where access to model parameters, training
data, and gradients of each layer is unavailable. In the black-box
setting, we constrain the explainer to derive the prediction prob-
ability P(c | Gg) exclusively by querying the model f(-) with the
code graph Gy, as the input.

Under the aforementioned scenario, the factual reasoning-based
explainers provide explainability by identifying key features that
contribute to the model’s prediction. For example, Li et al. [29]
propose to seek a compact sub-graph G that maintains the same
prediction result as using the whole code graph Gg. They opti-
mize the explainer by maximizing the probability of predicting the
original estimated label Y, when the input graph is limited to the
sub-graph Glf’ defined as:

max P(¥Y |GS). (6)
G} £k

On the contrary, counterfactual reasoning provides explainability
by generating counterfactual instances to address what-if ques-
tions. For the given code graph Gy, we generate its counterfactual
instance by introducing a subtle perturbation to it, resulting in a
new graph Gy. The perturbed graph Gy, differs minimally from the

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

original Gy, but is classified in a different class, i.e., f(Gi) # f(Gy).
As a result, counterfactual reasoning aims to identify a minimal
perturbation to Gy, that alters the decision of the detection system.
We mathematically formulate the counterfactual reasoning problem
as follows:

min d(Gy., Gy)

o <) ™

s.t, argmax P(c | Gy) # Y,
ce{0,1}

where d(-, -) represents a distance metric that quantifies the differ-
ences between Gy, and Gy, e.g., the number of edges removed by
the perturbation.

3 PROPOSED CFEXPLAINER

In this section, we propose a counterfactual reasoning-based ex-
plainer, named CFEXPLAINER, for GNN-based vulnerability detec-
tion. CFEXPLAINER comprises several key components: (1) Code
Graph Perturbation. CFEXPLAINER employs a differentiable edge
mask to represent the perturbation to the code graph, which trans-
forms the discrete search task for counterfactual perturbations into
a continuous learning task for edge masks. (2) Counterfactual
Reasoning Framework. Based on the differentiable edge mask,
CFEXPLAINER constructs a counterfactual reasoning framework
and designs a differentiable loss function to make this framework
optimizable, as illustrated in Figure 2. (3) Counterfactual Ex-
planation Generation. After optimization for the counterfactual
reasoning framework, CFEXPLAINER generates counterfactual ex-
planations for the detection system’s predictions. We will elaborate
on each component of CFEXPLAINER in the following.

3.1 Code Graph Perturbation

In our scenario, vulnerabilities often arise from incorrect or in-
consistent structural relations in the source code, such as control
and data flow flaws. Thus, for the given code graph Gy, we focus
on perturbing its graph structures (i.e., edges), represented by the
adjacency matrix Ay € {0, 1}"*", rather than perturbing the node
features X;. € R4 where n is the number of nodes in Gy and d
represents the feature dimension. Note that the code graph Gy is a
directed graph, hence, Ay is unsymmetrical.

One straightforward approach for generating counterfactual per-
turbations is through greedy search, which iteratively edits the code
graph by removing or re-adding edges. However, its practicality
is limited by the vast size of the search space, leading to ineffi-
ciency [3]. Although heuristic strategies can potentially explore
the search space more efficiently, identifying the optimal counter-
factual instance with precision is challenging. Specifically, there is
no guarantee that the counterfactual perturbation identified is the
minimal one necessary.

Edge Mask-based Perturbation. To overcome these limitations,
inspired by prior work [29, 33, 58], we adopt the edge masking
technique. This technique treats the searching for counterfactual
perturbations as an edge mask learning task. The idea is that a
perturbed graph Gy can be derived by masking out edges from the
original code graph Gy, as follows:

AkZAkQMk, (8)

Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation

ISSTA °24, September 16-20, 2024, Vienna, Austria

- T ettt Bttt il !
T

e i Code Graph G, A, i

http_read_stream(URLContext *h, 1

uint8_t *buf, int size) :

(I

HTTPContext *s = h->priv_data; :

I

- N .

if (s->chunksize >= @) { | EBZ :
if (!s->chunksize 3

¢) o) o) Distance Prediction | |

' st t Spred .

s->chunksize = strtoll(line, ' Loss Item | — L OSSI@!]’I 1

NULL, 16);

size = FFMIN(size, s->chunksize);

Figure 2:

where A, is the perturbed version of Ay, My € {0, 1}™*" is a binary
edge mask matrix, and © denotes element-wise multiplication. If
an element My ;; = 0, it indicates the edge (i, j) is masked out
in Ag. As directly learning the binary edge mask matrix My is
not differentiable, we relax My to continuous real values, which
is Mj € R™™ Then, as illustrated in Figure 2(b), the perturbed
adjacency matrix is generated by:

Ay =Ap 0 o(My), 9

where o (-) represents the sigmoid function that maps the edge mask
into the range [0, 1], allowing a smooth transition between the pres-
ence and absence of edges. As a result, starting from a randomly
initialized edge mask matrix, My can be optimized via gradient
descent. This approach enables a quicker and more precise deter-
mination of the minimal counterfactual perturbation compared to
search-based strategies.

3.2 Counterfactual Reasoning Framework

We build a counterfactual reasoning framework to generate expla-
nations for the predictions made by the GNN-based vulnerability
detection system. The core idea of our proposed framework is to
identify a minimal perturbation to the code graph that flips the
detection system’s prediction. This is achieved by addressing a
counterfactual optimization problem, which will be formulated in
the following.

Suppose that we have a trained GNN model (whose weight pa-
rameter W is fixed and inaccessible) and the code graph Gy for the
target code snippet Cy.. We first apply the edge mask My, on the code
graph Gy to generate a perturbed graph, i.e., Gy Subsequently, as
shown in Figure 2, we feed the original and perturbed code graphs
into the GNN model to produce respective estimated labels:

Y, = GNN(A4, Xi | W),

) y (10)
i = GNN(Ap, X; | W).

where X} denotes the features of the nodes in Gi. To identify a
minimal counterfactual perturbation, we learn the edge mask M;,
based on the optimization objective of the counterfactual reasoning
problem. Specifically, we reformulate Eq. (7) as follows:

n}ind(Ak,Ak), st, Vi # Y. (11)
My

E D

1
1
1
1
1
1
1
|
'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
|
1
1
1
1
1
|

An overview of our proposed counterfactual reasoning framework.

Here, the constraint part aims to ensure that the new prediction
Yy, is different from the original prediction Y}, while the objective
part aims to encourage that the perturbed adjacency matrix Ay, is
as close as possible to the original adjacency matrix Ay.

Direct optimization of Eq. (11) is challenging since both its ob-
jective and constraint parts are non-differentiable. To address this,
we design two differentiable loss function items to make the two
parts optimizable, respectively.

Prediction Loss Item. To satisfy the constraint condition in Eq. (11),
we design a prediction loss item L4 to encourage the detection
system towards producing a different prediction when the original
code graph Gy is perturbed into Gy, as follows:

Lprea = PV | A Xp) . (12)
This loss item aims to minimize the likelihood that the perturbed

graph Gy will maintain the original prediction Yy, thereby maxi-
mizing the chances of achieving an altered prediction outcome.

Distance Loss Item. To address the objective part in Eq. (11), we
utilize binary cross entropy as a differentiable distance function
to quantify the divergence between the original and perturbed
adjacency matrixes, which is formulated as follows:

Lyis; = BinaryCrossEntropy (Ag, Ag) . (13)

This distance function is chosen for its efficacy in measuring the
difference between two probability distributions. In our case, we
consider the presence and absence of edges in the graph as binary
classes, thus conceptualizing Ay as the estimated distribution of
edges and Ay, as the actual distribution. During optimization, L g;;
ensures that Ay remains as close as possible to Ay, thus determining
a minimal counterfactual perturbation to the code graph Gy.

Overall Loss Function. We integrate the above two loss items
into an overall loss function to optimize them collaboratively:

L=a- Lpred +(1-a) Lgist» (14)

where « is a hyper-parameter that regulates the trade-off between
the prediction loss item and the distance loss item. Higher & priori-
tizes changing the prediction outcome, potentially at the expense of
a larger perturbation, whereas lower « focuses more on minimizing
the perturbation. Based on the overall loss function, we optimize

ISSTA °24, September 16-20, 2024, Vienna, Austria

the counterfactual reasoning framework using the gradient descent
algorithm and the Adam optimizer [24]. Note that our framework
operates in the black-box setting, indicating that the process of
counterfactual reasoning focuses solely on updating the edge mask
M, to find the optimal perturbation while holding the underlying
GNN model’s parameters fixed.

3.3 Counterfactual Explanation Generation

Utilizing an optimized counterfactual reasoning framework, we
generate counterfactual explanations to explain the predictions
made by the vulnerability detection systems.

Generating Optimal Counterfatual Explanation. After opti-
mization, we obtain the optimal edge mask M?. In this mask ma-
trix, higher values indicate their corresponding edges should be
preserved while lower values indicate their corresponding edges
should be removed to reverse the detection system’s decision. To
form the final explanation, we employ a hyper-parameter Ky to
control the number of edges to be perturbed, i.e., taking the Ky
edges with the lowest mask values. Then, we obtain the optimal
counterfactual perturbed graph GZ by removing the Kj; selected
edges and derive a sub-graph:

G =G -G (15)

As a result, the optimal counterfactual explanation takes the fol-
lowing form: the derived sub-graph G5* is the most critical factor
on the detection result, that if removed, then the code would not be
predicted as vulnerable.

Deriving Diverse Counterfactual Explanations. In real-world
scenarios, developers may need diverse counterfactual explanations
to explore and understand the context of the detected vulnerability.
To achieve this, we build a narrowed search space based on the
sub-graph Gi*. Within this space, we employ exhaustive search
to methodically explore and filter various edge combinations in
G]f* whose removal would alter the detection system’s prediction.
This process generates a set of diverse counterfactual explanations,
each offering insights into the detected vulnerability from different
perspectives. Moreover, such diversity provides developers with
multiple actionable options to address the detected vulnerability.

4 EXPERIMENTAL SETUP

In this section, we begin by presenting the dataset, the baseline
explainers for comparison, and the implementation details. Subse-
quently, we introduce two types of evaluation metrics to quantita-
tively evaluate the effectiveness of our proposed CFEXPLAINER.

4.1 Dataset

Aligning with previous studies [14, 20, 21, 29], we conduct our ex-
periments on the widely-used vulnerability dataset, Big-Vul [13].
Linked to the public CVE database [18], Big-Vul comprises extensive
source code vulnerabilities extracted from 348 open-source C/C++
GitHub projects, spanning from 2002 to 2019. It encompasses a
total of 188,636 C/C++ functions, including 10,900 vulnerable ones,
covering 91 various vulnerability types. Unlike other existing vul-
nerability datasets (i.e., Devign [66] and Reveal [6]) which only
provide vulnerability labels at the function level, Big-Vul offers

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

more detailed, statement-level code changes derived from original
git commits. These code changes for fixing vulnerabilities are cru-
cial in our study. They enable us to build ground-truth labels for
quantitatively evaluating the quality of the generated explanations
(see Section 4.4).

To enhance the dataset’s quality, we follow the cleaning proce-
dure proposed by Hin et al. [20]. Specifically, we remove comment
lines from the code and ignore purely cosmetic code changes (e.g.,
changes to whitespace). We also exclude improperly truncated or
unparsable code snippets. Additionally, following the practices of
previous research [14, 20], we perform random undersampling for
non-vulnerable code snippets to obtain a balanced dataset. In this
work, we employ an open-source code analysis tool, Joern [2, 57], to
parse each code snippet into a PDG, which serves as the input for the
GNN-based detection model. PDG is a commonly used graph repre-
sentation for code in vulnerability detection research [14, 20, 21, 29],
which takes code statements as nodes and control-flow or data-flow
dependencies as edges. Finally, the dataset is randomly divided into
training, validation, and testing sets with a ratio of 8:1:1. Note that
the explainers only generate explanations for the detection model’s
predictions on the test set.

4.2 Baselines

To provide a comparative analysis, we investigate six prominent
factual reasoning-based GNN explainers as our baselines:

o GNNExplainer [33] seeks a crucial sub-graph by maximizing
the mutual information between the original GNN’s prediction
and the sub-graph distribution.

PGExplainer [34] learns an edge mask predictor based on the
mutual information loss used in [33]. It accesses the training set
to train the edge mask predictor.

SubgraphX [63] employs the Monte Carlo tree search algo-
rithm [44] to efficiently identify important sub-graphs with a
node pruning strategy.

GNN-LRP [40] decomposes the GNN’s prediction scores into
the importance of various graph walks using a higher-order
Taylor decomposition and returns a set of most important graph
walks as an explanation.

DeepLIFT [43] is another decomposition-based explainer but
originally designed for image classification. A previous work [62]
extends it to explain GNN models, denoted as DeepLIFT-Graph.
GradCam [41] is a popular gradient-based explainer for image
classification. It backpropagates the prediction scores to compute
the gradients, which are then used to approximate the input
importance. The previous work [62] adapts it for explaining
GNN models, denoted as GradCam-Graph.

For the hyper-parameters of these baseline explainers, we adopt
the implementation provided by previous research [21, 62]. Note
that PGExplainer, GNN-LRP, DeepLIFT-Graph, and GradCam-Graph
do not operate in the black-box setting, as they require access to
model parameters, training data, and gradient information of GNNs.

4.3 Implementation Details

Our implementation comprises two main components: training
GNN-based vulnerability detection models and generating explana-
tions for the detection model’s predictions.

Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation

Table 1: The performance of the reimplemented GNN-based
vulnerability detection models.

GNN Core | Acc(%) Pr(%) Re(%) Fi(%)

GCN 72.05 60.39 4481 51.44
GGNN 71.89 5943 47.08 52.54
GIN 72.16 58.71 53.08 55.75

GraphConv 70.98 56.61 52.11 54.27

4.3.1 GNN-based Vulnerability Detection. In our experiments, we
reimplement four vulnerability detection models employing dif-
ferent GNN cores (i.e., GCN, GGNN, GIN, and GraphConv). Each
detection model adopts a two-layer GNN architecture with a hid-
den dimension of 256, followed by graph mean pooling to derive
graph-level representations. The graph-level representations are
then input to a two-layer MLP classifier for vulnerability detec-
tion. In the model, we utilize GraphCodeBERT’s token embedding
layer [19] to initialize node features for the input code graph. ReLU
activation functions are used after each layer, except for the final
one, to introduce non-linearity. Based on the binary cross-entropy
loss, we train each detection model using the Adam optimizer [24]
for 50 epochs, with a learning rate of 0.005 and a batch size of 64.
As shown in Tabel 1, following prior research [7, 29, 31], we evalu-
ate the performance of the reimplemented detection models using
Accuracy, Precision, Recall, and F; score. The results show that all
four detection models achieve an Accuracy over 70%, a Precision
over 55%, a Recall over 40%, and an F; score over 50%. Among them,
GCN excels in Precision, while GIN leads in Accuracy, Recall, and
F; score. Overall, these models exhibit similar performance with
high Precision and relatively low Recall.

4.3.2 Explanation Generation. For the implementation of our pro-
posed CFEXPLAINER, we train it using Adam to minimize the loss
function described in Section 3.2 for 800 epochs at a learning rate
of 0.05. Note that, for each code snippet sample, CFEXPLAINER is
trained individually to explain the detection model’s prediction. We
set the hyper-parameter Ky to 8 by default and use the same Ky
value to control the size of the explanation sub-graphs generated
by the factual reasoning-based explainers for fair comparison. In
addition, in Section 5.3, we conduct a parameter analysis on the
hyper-parameter «, exploring values from 0.1 to 0.9 to understand
its influence on CFEXPLAINER’s performance. It should be noted
that the explainers aim to provide explanations by identifying the
critical factors that contribute to the detected vulnerability. Thus,
it is meaningless to explain the non-vulnerable code snippets and
unfair to explain the code snippets that are incorrectly detected
as vulnerable. As a result, we only consider explaining vulnerable
code snippets that are correctly detected.

4.4 Evaluating the Explainability

In this section, we introduce two types of metrics to evaluate the
quality of the generated explanations quantitatively.

4.4.1 Vulnerability-oriented Evaluation Metric. Evaluating counter-
factual explanations in code is challenging due to the difficulty in ob-
taining standardized ground truth. Previous research [10] has relied

ISSTA °24, September 16-20, 2024, Vienna, Austria

on manual labeling for evaluation, which is costly, not easily scal-
able, and lacks standardization. Fortunately, the Big-Vul dataset mit-
igates this issue by providing detailed statement-level fixes within
git commits, which accurately reflect the changes addressing vul-
nerabilities. We utilize these commits to construct standardized
ground-truth labels for our generated counterfactual explanations.

In the vulnerability-oriented evaluation, following methodolo-
gies established in vulnerability detection research [13, 20, 21, 29],
we adopt the statements that are deleted or modified in the commit
(marked with “~” signs) as ground-truth labels. Specifically, we
extract all the statements from the vulnerable version of the code to
build a binary ground-truth vector, denoted as S = [s1,s2,...,57],
where s; = 1 indicates the i-th statement is deleted or modified
in the fixed version, and s; = 0 otherwise. Correspondingly, we
construct a binary explanation vector A = [J, 01, ..., 6], where
non-zero values in A represent the corresponding statements in-
cluded in the generated explanation sub-graph. The comparison of
A with the ground-truth vector S allows for a quantitative evalua-
tion of how accurately the generated explanations identify critical
statements associated with the vulnerability.

Consider a given set of M vulnerable code snippets denoted as
{C1,Cy,...,Cp} for evaluation. For each code snippet, an expla-
nation is deemed correct if it encompasses the deleted or altered
statements. Consequently, we compute the Accuracy score by de-
termining the percentage of accurate explanations among all gener-
ated explanations. Moreover, we calculate the Precision and Recall
scores for each code snippet by comparing the explanation vector
A and the ground-truth vector S:

T8 T8
i1 S0 o Zim SO

r . > r .
i=1 0 i=1 5

Precision = (16)
In our scenario, Precision measures the proportion of statements
in the explanation that are relevant and accurately pertain to the
vulnerability. On the other hand, Recall measures the proportion of
ground-truth statements that are accurately included in the expla-
nation. Additionally, we compute F; as the harmonic mean of the
two scores to evaluate the overall performance. The formula for F1
is given as follows:

Fi = 2 - Precision - Recall (17)
1™ "Precision + Recall

Finally, we calculate the average scores of Precision, Recall, and F;
across all code snippets.

4.4.2 Model-oriented Evaluation Metric. The vulnerability-oriented
evaluation metrics primarily focus on assessing the consistency
between the generated explanations and the root causes of the de-
tected vulnerabilities. However, these metrics cannot quantify to
what extent the generated explanations really influence the detec-
tion system’s decisions. Thus, inspired by previous research [47, 48],
our model-oriented evaluation borrows insights from causal infer-
ence theory and introduces Probability of Necessity (PN) [17] to
fill this gap. Intuitively, for an explanation E that is generated to
explain prediction P, if E does not happen then P will not happen,
we say E is a necessary explanation for supporting the prediction P.
The core idea of PN is that: if we imagine a counterfactual world
where the explanation sub-graph Glf did not exist in the original
code graph Gy, then whether the corresponding code snippet Cx

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 2: Comparison for the vulnerability-oriented evaluation results of explainers.

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin

Exolai \ GCN \ GGNN \ GIN \ GraphConv
xplainer

‘Acc (%) Pr (%) Re (%) F1 (%)|Acc (%) Pr (%) Re (%) F1 (%)|Acc (%) Pr (%) Re (%) F1 (%)|Acc (%) Pr (%) Re (%) F1 (%)
GNNExplainer 59.06 13.68 41.26 17.29| 61.25 13.94 45.54 18.76| 53.37 12.14 34.42 15.09| 53.12 12.81 37.54 16.31
PGExplainer 42.39 11.70 26.41 13.71| 53.98 13.78 38.12 17.31| 44.79 11.20 30.08 13.93 | 46.25 1242 31.98 15.17
SubGraphX 43.12 1244 27.29 13.77 | 41.52 12,53 27.60 14.48 | 36.81 11.29 23.14 1259 | 42,50 12.64 26.60 14.09
GNN-LRP 56.00 13.31 3852 16.49| 59.86 13.32 44.19 17.83 | 54.94 14.20 39.54 17.54| 48.74 12.51 34.85 15.52
DeepLIFT-Graph| 50.00 12.88 33.14 15.61 | 55.36 14.39 39.83 17.84| 47.24 12.89 32.84 1558 | 49.69 12.48 34.85 15.43
GradCam-Graph| 44.93 1293 27.69 14.54| 56.06 13.22 41.04 17.23| 44.17 13.62 30.03 15.64 | 41.88 11.73 2891 13.96
CFEXPLAINER | 61.23 13.84 42.84 17.84| 61.25 14.13 44.30 18.48 | 60.12 14.36 42.29 18.03| 53.75 12.77 38.36 16.32

Note: We highlight the best score in bold and the second best score in underlined in each column.

would not be detected as vulnerable? This is critical for under-
standing the causal impact of the explanations on the prediction
outcomes. Following this idea, we define PN as the proportion of the
generated sub-graph explanations that are necessary to influence
the detection system’s predictions, as follows:

1, if ?Ié * ilk:
0, else,

M
1
PN = M;pnk, where png = { (18)

where Y/Ié = argmaxcc 1) P(c | Gk —Gi) represents the prediction
result for the code snippet Cy when the explanation sub-graph Glf is
removed from the original code graph Gg. If removing G,f changes

the prediction Yy, the explanation is considered necessary.

5 EXPERIMENTAL RESULTS

To evaluate the performance of our counterfactual reasoning ap-
proach, we address the following Research Questions (RQs):

e RQ1: Vulnerability-oriented Evaluation. How well does CF-
EXPLAINER perform in comparison with state-of-the-art factual
reasoning-based explainers in identifying the root causes of the
detected vulnerabilities?

e RQ2:Model-oriented Evaluation. How well does CFEXPLAINER
perform in comparison with state-of-the-art factual reasoning-
based explainers in generating explanations that really influence
the detection model’s decision?

¢ RQ3: Influence of Hyper-parameter a. How do different set-
tings of the trade-off hyper-parameter o impact the performance
of CFEXPLAINER ?

5.1 RQ1: Vulnerability-oriented Evaluation

One of the key objectives of explainers in our context is to accu-
rately identify the root causes of detected vulnerabilities. The effec-
tiveness of our proposed CFEXPLAINER, in comparison to factual
reasoning-based explainers, is quantitatively showcased in Table 2,
which reports the vulnerability-oriented evaluation results on four
GNN-based detection models: GCN, GGNN, GIN, and GraphConv.
These results reveal that CFEXPLAINER outperforms the baseline
explainers in most scenarios, demonstrating the effectiveness of
our counterfactual reasoning approach. Across the four GNN-based
detection models, CFEXPLAINER achieves average improvements
of 24.32%, 12.03%, 28.22%, and 14.29% in Accuracy, 7.93%, 4.43%,

14.36%, and 2.72% in Precision, 32.28%, 12.47%, 33.51%, and 18.19%
in Recall, 17.10%, 7.18%, 19.71%, and 8.22% in F; score over the
factual reasoning-based explainers.

Among all baseline explainers, the perturbation-based GNNEx-
plainer exhibits relatively good performance by directly searching
for a crucial sub-graph that significantly contributes to the vulnera-
bility detected by GNNs. Besides, the decomposition-based methods
(i.e., GNN-LRP and DeepLIFT-Graph) directly decompose the detec-
tion model’s predictions into the importance of edges in the code
graph and select the most important edges as an explanation, re-
sulting in slightly inferior performance compared to GNNExplainer.
However, the other two perturbation-based methods (i.e., PGEx-
plainer and SubGraphX) and the gradient-based GradCam-Graph
method perform relatively poorly. This is because PGExplainer’s
mask predictor may suffer from the distribution shift between the
training and test sets, while SubGraphX’s node pruning strategy
may be not compatible with our scenario of perturbing edges in the
code graph. GradCam-Graph utilizes gradient values to measure
the edge importance, leading to an explanation sub-graph that cor-
relates with the detection model’s hidden information rather than
the actual vulnerabilities. In contrast to these factual reasoning-
based explainers, CFEXPLAINER aims to address what-if questions
by seeking a minimal perturbation to the code graph that alters the
detection model’s prediction from “vulnerable” to “non-vulnerable”.
Through this exploration, CFEXPLAINER delves deeply into the con-
text where the vulnerability occurs, revealing causal relationships
between code structures and detection outcomes, thereby discover-
ing the root causes of the detected vulnerabilities.

Answer to RQ1: CFEXPLAINER exhibits superior effective-
ness in vulnerability-oriented evaluation, outperforming
state-of-the-art factual reasoning-based explainers.

5.2 RQ2: Model-oriented Evaluation

Compared to vulnerability-oriented evaluation, model-oriented
evaluation focuses on assessing the necessity of the generated ex-
planations for supporting the detection model’s predictions. As
illustrated in Figure 3, CFEXPLAINER demonstrates superior per-
formance over state-of-the-art factual reasoning-based explainers
across four GNN-based detection models. Notably, the PN curve

Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation

ISSTA °24, September 16-20, 2024, Vienna, Austria

GCN GGNN GraphConv
60 60 0 80
54 54 63 72
48 48 56 64 "
42 42 /_" 19 56

GIN
e 16
7 ’ 3

S g 30 —
=
[l 24
18 18
. /,M—’ 12
— e ——)
6 e 6
ol 0
0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 13 16 18 20
Ky K

—— GNNExplainer ~ —— PGExplainer ~ —— SubGraphX

) 2 46 8 10 12 14 16 18 20 2 16 8 10
Ky Ky

DeepLIFT

12 14 16 18 20

GNN-LRP —+— GradCam —=— CFEXPLAINER

Figure 3: Comparison for the model-oriented evaluation results of explainers.

F (%) PN (%)

18.65 5.5
18.30 /~ 51

17.95 16.5
17.60 ‘_\,a/'/ 42.0
17.25 375

16.90 33.0

:

1655 285

16.20 _/-\./'\./'\./'_' 24.0

15.85 195

00T 02 03 01 05 06 07 05 09 %0 01 02 03 04 05 06 07 08 09
GCN —— GGNN GIN —=— GraphConv

Figure 4: A parameter analysis on the hyper-parameter a.

for CFEXPLAINER consistently encompasses those of the baseline
explainers under various Ky settings, visually indicating its effec-
tiveness. Unlike factual reasoning-based explainers that identify
crucial sub-graphs but fall short in determining their actual in-
fluence on detection outcomes, CFEXPLAINER targets a minimal
change to the code graph that alters the prediction. This approach
ensures the identification of edges that are truly necessary for the
prediction outcome. This distinction is crucial in understanding
CFEXPLAINER’s ability to provide more accurate and essential expla-
nations. Moreover, we can observe that as the value of Kj; increases,
the PN scores of all explainers generally show improvement. This
improvement can be attributed to that with a higher Kjs value,
more crucial edges necessary for supporting the detection result
are