
Scrub It Out! Erasing Sensitive Memorization in Code Language
Models via Machine Unlearning

Zhaoyang Chu∗
Huazhong University of Science and

Technology
Wuhan, China

chuzhaoyang@hust.edu.cn

Yao Wan∗†
Huazhong University of Science and

Technology
Wuhan, China

wanyao@hust.edu.cn

Zhikun Zhang
Zhejiang University
Hangzhou, China
zhikun@zju.edu.cn

Di Wang
King Abdullah University of Science

and Technology
Thuwal, Saudi Arabia
di.wang@kaust.edu.sa

Zhou Yang
University of Alberta
Edmonton, Canada
zy25@ualberta.ca

Hongyu Zhang
Chongqing University
Chongqing, China

hyzhang@cqu.edu.cn

Pan Zhou
Huazhong University of Science and

Technology
Wuhan, China

panzhou@hust.edu.cn

Xuanhua Shi∗
Huazhong University of Science and

Technology
Wuhan, China

xhshi@hust.edu.cn

Hai Jin∗
Huazhong University of Science and

Technology
Wuhan, China

hjin@hust.edu.cn

David Lo
Singapore Management University

Singapore, Singapore
davidlo@smu.edu.sg

Abstract

While Code Language Models (CLMs) have demonstrated superior
performance in software engineering tasks such as code generation
and summarization, recent empirical studies reveal a critical pri-
vacy vulnerability: these models exhibit unintended memorization
of sensitive training data, enabling verbatim reproduction of confi-
dential information when specifically prompted. To address this is-
sue, several approaches, including training data de-duplication and
differential privacy augmentation, have been proposed. However,
these methods require full-model retraining for deployed CLMs,
which incurs substantial computational costs. In this paper, we aim
to answer the following research question: Can sensitive information
memorized by CLMs be erased effectively and efficiently?

We conduct a pioneering investigation into erasing sensitive
memorization in CLMs through machine unlearning—a post-hoc
modificationmethod that removes specific information from trained
∗Also with National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, 430074, China.
†Yao Wan is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2025-3/26/04
https://doi.org/10.1145/3744916.3764573

models without requiring full retraining. Specifically, we first quan-
tify the memorization risks of sensitive data within CLM training
datasets and curate a high-risk dataset of 50,000 sensitive mem-
orized samples as unlearning targets. We study two widely used gra-
dient ascent-based unlearning approaches: the vanilla and constraint-
based methods, and introduce CodeEraser, an advanced variant
that selectively unlearns sensitive memorized segments in code
while preserving the structural integrity and functional correctness
of the surrounding code. Extensive experiments on three families
of CLMs, i.e., CodeParrot, CodeGen-Mono, and Qwen2.5-Coder,
validate the effectiveness and efficiency of CodeEraser in erasing
targeted sensitive memorization while maintaining model utility.

CCS Concepts

• Software and its engineering→ Software development tech-

niques; • Security and privacy;

Keywords

Code Language Models, Code Generation, Privacy, Sensitive Mem-
orization, Machine Unlearning

ACM Reference Format:

Zhaoyang Chu, Yao Wan, Zhikun Zhang, Di Wang, Zhou Yang, Hongyu
Zhang, Pan Zhou, Xuanhua Shi, Hai Jin, and David Lo. 2026. Scrub It Out!
Erasing Sensitive Memorization in Code Language Models via Machine
Unlearning. In 2026 IEEE/ACM 48th International Conference on Software
Engineering (ICSE ’26), April 12–18, 2026, Rio de Janeiro, Brazil. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3744916.3764573

https://doi.org/10.1145/3744916.3764573
https://doi.org/10.1145/3744916.3764573

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhaoyang Chu, Yao Wan, Zhikun Zhang, Di Wang, Zhou Yang, Hongyu Zhang, Pan Zhou, Xuanhua Shi, Hai Jin, and David Lo

1 Introduction

Recently, Code Language Models (CLMs), such as CodeGen [50],
Code Llama [54], and Qwen2.5-Coder [34], have demonstrated
significant potential in automating various aspects of software
engineering, including code generation [22, 38, 63], code summa-
rization [2, 5, 62], program repair [65, 66], and type inference [44].
Their success can be attributed to pre-training with autoregressive
language modeling on large-scale code corpora [60, 61], where the
model predicts the next token given a sequence of previous tokens.

However, studies have shown that the current pre-training para-
digm may retain sensitive data, e.g., emails and passwords, encoun-
tered during the training phase [3, 15, 17, 51, 68]. This retention
occurs because CLMs, trained on vast amounts of code collected
from GitHub repositories, may inadvertently memorize sensitive
data embedded within these repositories, including personally iden-
tifiable information (e.g., names, emails, and phone numbers) and
private authentication credentials (e.g., passwords, API keys, and
cryptographic secrets) [7, 27, 33, 46, 51, 68].

From another perspective, to strengthen individual control over
personal data, global legislative frameworks such as the European
Union’s General Data Protection Regulation (GDPR) [57] and the
California Consumer Privacy Act (CCPA) [52] have established the
“Right to Be Forgotten” (RTBF) [58, 59]. These regulations empower
individuals to request the deletion of their personal data, providing
a critical safeguard for privacy protection.

To mitigate the privacy risks posed by potential data leaks in
CLMs and ensure compliance with the RTBF, we investigate the
following question: Can sensitive information memorized by CLMs
be erased effectively and efficiently?

Intuitive Approaches and Limitations. Our investigation re-
veals two distinct research directions. The first focuses on train-
ing data de-duplication, as illustrated in Figure 1 (a). Prior stud-
ies [15, 39, 43] have demonstrated that de-duplication can miti-
gate the memorization tendencies of LMs. However, experimental
evidence indicates that LMs still retain substantial memorization
capabilities even under this paradigm [8, 9, 37].

Another line of research falls into Differential Privacy (DP) [1,
74], as shown in Figure 1 (b). This approach enforces the formal
guarantee that the addition or removal of any training data point
does not substantially affect the final model [73], thereby providing
formal privacy guarantees for individual training samples. However,
DP-based training fundamentally limits LMs’ ability to capture long-
tail patterns in data distributions, resulting in significant utility
degradation [4, 25, 26].

Furthermore, both DP and de-duplication methods are typically
applied during the initial training phase. For already deployed
CLMs, these methods lack the ability to selectively remove specific
data as requested by users, often necessitating retraining the entire
model [18, 37, 48]. Such retraining is costly and time-consuming,
especially given the escalating scale of contemporary CLMs. This
limitation prevents their flexibility in addressing dynamic user re-
quests and evolving privacy demands in real-world scenarios.

Our Work: A Machine Unlearning Perspective. More recently,
machine unlearning has emerged as a promising alternative for LMs,
as shown in Figure 1 (c), which seeks to remove specific information
by post-hocmodifying the trained model [11, 14, 18, 30, 37]. Existing

approaches typically employ gradient ascent to reverse the learning
of specific data, thus proactively removing its influence [18, 37].
Compared to DP and de-duplication techniques, machine unlearn-
ing enables LMs to quickly forget certain information with just a
few parameter updates without full retraining, thereby reducing the
training time from 900∼1800 to ∼0.001 A100 GPU days [37]. Nev-
ertheless, we argue that these approaches often indiscriminately
forget entire text instances rather than selectively targeting specific
sensitive information. As a result, they struggle to erase sensitive
segments (e.g., API key strings) embedded in code without dis-
rupting the structural integrity and functional correctness of the
surrounding code.

In this paper, we perform a pioneering investigation into sensi-
tive memorization erasure 1 in CLMs through machine unlearning.
Specifically, we first quantify the memorization risks of sensitive
data within CLM training corpora and curate a high-risk dataset
of 50,000 sensitive memorized samples as unlearning targets. We
investigate two widely used gradient ascent-based unlearning ap-
proaches: the vanilla method and the constraint-based method, and
further develop an advanced variant, termed CodeEraser, which
selectively unlearns sensitive memorized segments in code while
preserving the surrounding code’s integrity and functionality.

To assess the effectiveness and efficiency of CodeEraser, we
conduct extensive experiments on three widely used suites of CLMs,
i.e., CodeParrot [24], CodeGen-Mono [50], and Qwen2.5-Coder [34].
The results demonstrate CodeEraser’s ability to effectively and
efficiently mitigate the memorization issue in CLMs, thus protect-
ing sensitive data against potential extraction attacks. Using the
Qwen2.5-Coder-7B model as an example, CodeEraser success-
fully reduces memorization by 93.89% on the targeted forgotten set
(sampled from the sensitive memorization dataset), while retain-
ing 99.00% of the model’s original performance, with an average
processing time of 46.88 seconds per sample.
Contributions. The key contributions of this paper are as follows.
• New Problem and Dataset. To the best of our knowledge, we
are the first to formulate the problem of erasing sensitive mem-
orization within CLMs. As an initial step, we curate a sensitive
memorization dataset to support further research in this area.

• Pioneering Study.We conduct the first comprehensive study
on sensitive memorization erasure in CLMs via machine un-
learning. We also introduce a selective gradient-ascent approach
CodeEraser to target and remove sensitive memorized seg-
ments while preserving code integrity.

• Extensive Evaluation.We conduct comprehensive experiments
on three widely used families of CLMs, namely CodeParrot [24],
CodeGen-Mono [50], andQwen2.5-Coder [34]. The results demon-
strate the effectiveness and efficiency of CodeEraser in erasing
sensitive memorization within CLMs while maintaining accept-
able levels of model utility.

2 Background

We begin by introducing the background of LMs, followed by a
formal definition of memorization in these models.

1We adopt the term sensitive memorization to denote the phenomenon where CLMs
retain and reproduce sensitive training data (e.g., API keys). Thus, by memorization
erasure, we mean techniques designed to remove such retained sensitive content.

Scrub It Out! Erasing Sensitive Memorization in Code Language Models via Machine Unlearning ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

User

I practice my Right To

Be Forgotten (RTBF)!

Sensitive Private Information

user_config = {
 'status': 'activated',
 'username': 'Su ',
 'password': 'rb 23',
 'email': 'su @ .com',
}

Deployed CLMTraining Dataset

Model Provider

Deletion Request

~1800 A100 GPU days~900 A100 GPU days ~0.001 A100 GPU days

Retrained

CLM

retrain

de-duplicate

(c) Machine Unlearning

Retrained CLM

retrain

Unlearned CLM

(b) Differential Privacy(a) Data De-duplication

train

Pr[()] Pr[()]D e D   +
gradient ascent

Figure 1: An illustration of existing methods, i.e., (a) data de-duplication, (b) differential privacy, and (c) machine unlearning, to

mitigate the memorization of sensitive information in CLMs. We mask the personal details for ethical considerations.

2.1 Language Models

Language Models (LMs) are designed to predict the probability of
a token sequence by utilizing the empirical distribution of token
occurrences in the training data. One widely adopted unsupervised
approach for training LMs is autoregressive languagemodeling, also
known as “next-token prediction”, where the model sequentially
predicts tokens from left to right [12, 47, 53].
Autoregressive Language Modeling. Given a token sequence
x = (𝑥1, 𝑥2, . . . , 𝑥𝑁), the LM employs the chain rule to model its
joint probability as the product of conditional probabilities:

Pr(𝑥1, 𝑥2, . . . , 𝑥𝑁) =
𝑁∏
𝑖=1

Pr(𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖−1) . (1)

In this paradigm, a neural network model 𝑓 , parameterized by 𝜃 ,
is typically employed to estimate the likelihood of each token 𝑥𝑖
conditioned on preceding tokens, denoted as 𝑓𝜃 (𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖−1).
The parameters 𝜃 are optimized by maximizing the probability of
each sample within the training dataset D. This is achieved by
minimizing the loss function as follows:

L𝐿𝑀 (x) = − log
𝑁∏
𝑖=1

𝑓𝜃 (𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖−1) . (2)

Model Inference via Prefix Prompt. Once the LM 𝑓𝜃 is trained,
it can generate outputs based on a given prefix prompt during in-
ference. Given a prefix prompt 𝑝 = (𝑥1, . . . , 𝑥𝑖−1), the trained LM
iteratively predicts the next tokens to complete the suffix 𝑠 . Specifi-
cally, the model samples 𝑥𝑖 ∼ 𝑓𝜃 (𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖−1) and subsequently
feeds 𝑥𝑖 back into the model to sample 𝑥𝑖+1 ∼ 𝑓𝜃 (𝑥𝑖 | 𝑥1, . . . , 𝑥𝑖),
iteratively. Each newly generated token is conditioned on both the
initial prompt and all previously generated tokens. This decoding
process is repeated until a termination condition is met, e.g., gener-
ating a special token </s>, indicating the end of the sequence, or
reaching a predefined maximum length of the token sequence.

2.2 Memorization in Language Models

Memorization, often seen as the antithesis of generalization, arises
from overfitting, causing models to retain specific details of their
training data [3, 25]. This phenomenon raises remarkable privacy
concerns in the context of LMs, as these models may inadvertently
memorize sensitive information and regurgitate it verbatim in re-
sponse to certain prompts.

Extensive research has been undertaken to qualitatively and
quantitatively examine memorization in LMs [3, 15–17, 33, 35, 49,
51, 68]. Following these prior studies, we define memorization in
LMs grounded in the extractability of training data. In particular,
we conceptualize memorization as a model’s ability to store and
reproduce exact pieces of information encountered during training.

Definition 1 (Verbatim Memorization). A string 𝑠 is considered
memorized by an LM 𝑓𝜃 if there exists a prefix 𝑝 such that:

𝑠 = argmax
𝑠

𝑓𝜃 (𝑠 | 𝑝) ∧ [𝑝 | | 𝑠] ∈ D . (3)

Here, 𝑓𝜃 (𝑠 | 𝑝) denotes the model’s likelihood of generating an
entire sequence 𝑠 given the prefix 𝑝 , [𝑝 | | 𝑠] represents the concate-
nation of strings 𝑝 and 𝑠 , and D denotes the training dataset of 𝑓𝜃 .
The argmax operation can be replaced by an appropriate decoding
strategy (e.g., greedy sampling) to determine the model’s outputs
in practical applications.

Example 1. Assume that the LM’s training dataset contains a se-
quence “# Copyright (C) [2003] Daniel <daniel@gmail.com>”. If the
model is prompted with “# Copyright (C) [2003] Daniel ” and
the most likely continuation is “<daniel@gmail.com>”, then the
generated string is deemed memorized.

3 Preliminary Study

We first conduct a preliminary study to quantitatively examine the
presence and severity of sensitive memorization in CLMs.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhaoyang Chu, Yao Wan, Zhikun Zhang, Di Wang, Zhou Yang, Hongyu Zhang, Pan Zhou, Xuanhua Shi, Hai Jin, and David Lo

Table 1: A toy example to illustrate the calculation process of MA and EL𝑛 with 𝑛 = 3.

Target Sequence (with 12 tokens): This file is part of EasyBuild created by the HPC team .

Prefix000

MA = 6 / (12 - 1) = 0.5455 EL3 = (0.2222 + 0.25 + 0.1429 + 0.1667 + 0.2 + 0 + 0 + 0 + 0) / (12 - 3) = 0.1091

True Continu-

ation00

Generated

Token00
True Continuation000 Generated Sequence000 OVERLAP3

This file program file is part of EasyBuild created by the HPC team . program is part of pyNLO , which is created by the 2 / 9 = 0.2222

This file is is is part of EasyBuild created by the HPC team . is part of PyGithub created by the PYG team . 2 / 8 = 0.2500

This file is part part part of EasyBuild created by the HPC team . part of PyGithub created by the PYG team . 1 / 7 = 0.1429

… file is part of of of EasyBuild created by the HPC team . of PyGithub created by the PYG team . 1 / 6 = 0.1667

… is part of EasyBuild PyGithub EasyBuild created by the HPC team . PyGithub created by the PYG team . 1 / 5 = 0.2000

… of EasyBuild created . created by the HPC team . . EasyBuild is free software ; 0 / 4 = 0.0000

… created by by by the HPC team . by the VSC team , 0 / 3 = 0.0000

… created by the the the HPC team . the VSC team , 0 / 2 = 0.0000

… created by the HPC VSC HPC team . VSC team , 0 / 1 = 0.0000

… by the HPC team team - - -

… the HPC team . , - - -

ix
ix ˆ

ix
ˆ
ix

token

match

ix 3-gram match

3.1 Study Subjects

Studied CLMs. To systematically analyze model memorization, we
select representative CLMs varying in size and architecture. Follow-
ing [3, 68], we examine four widely used models: CodeParrot-small
(110M), CodeParrot (1.5B) [24], and CodeGen-{350M, 2B}-Mono[50].
Our analysis also includes Qwen2.5-Coder-7B [34], a state-of-the-
art CLMwith over 35.3k monthly downloads on HuggingFace at the
time of writing. All selected models are accessible on HuggingFace
Hub, enabling ethical and reproducible memorization analysis.
Studied Datasets. We utilize codeparrot-clean-train [21], a
50GB dataset comprising ∼5 million Python files. We select it for
two key reasons: (1) It is a high-quality, cleaned subset of GitHub
corpora, extracted via Google’s BigQuery [31], making it representa-
tive of standard CLM training data. (2) It offers the repository source
for each code instance, enabling realistic unlearning simulations
where users request the removal of sensitive data unknowingly
included in their repositories. These make it ideal for standardized
memorization analysis and unlearning evaluations across CLMs.

3.2 Memorization Quantification

3.2.1 Memorization Metrics. To accurately assess whether and to
what extent CLMs retain specific data, our analysis adopts two
quantitative metrics: Memorization Accuracy (MA) [56] and Extrac-
tion Likelihood (EL) [37]. As illustrated in Table 1, these metrics
measure memorization by comparing the CLM’s generation with
the true continuation, at the token and 𝑛-gram levels, respectively.
Memorization Accuracy (MA) [56]. Given a specific token se-
quence x = (𝑥1, 𝑥2, . . . , 𝑥𝑁), we let the CLM 𝑓𝜃 sequentially process
this sequence from left to right and predict each token based on
its preceding context. Then, MA calculates the accuracy of these
predictions by comparing the generated tokens with their corre-
sponding actual tokens in the sequence x:

MA(x) =
∑𝑁
𝑖=2 1{argmax𝑥𝑖 𝑓𝜃 (𝑥𝑖 | 𝑥<𝑖) = 𝑥𝑖 }

𝑁 − 1
, (4)

where 1 is the indicator function that returns 1 if the condition
within the braces is true (i.e., the CLM’s most likely prediction 𝑥𝑖

accurately matches the actual token 𝑥𝑖) and 0 otherwise, and the
notion 𝑥<𝑖 denotes the sequence of all tokens before position 𝑖 .
Example 2. As shown in columns 1-3 of Table 1, given various pre-
fixes 𝑥<𝑖 , 𝑥𝑖 matches 𝑥𝑖 with 6 times (marked in green), resulting
in an MA score of 0.5455. We can see that MA measures the pro-
portion of tokens in a sequence that the CLM can recall exactly,
reflecting its capacity to memorize and reproduce training data.
Extraction Likelihood (EL) [37]. Compared with MA computed
at the token level, EL enables a stricter standard for quantifying
memorization by assessing the extent to which the generated se-
quence 𝑥≥𝑖 matches the true continuation 𝑥≥𝑖 at the 𝑛-gram level:

EL𝑛 (x)=
∑𝑁
𝑖=2Overlap𝑛 (argmax𝑥≥𝑖 𝑓𝜃 (𝑥≥𝑖 |𝑥<𝑖), 𝑥≥𝑖)

𝑁 − 𝑛 ,

Overlap𝑛 (a, b) =
∑
𝑐∈𝑛𝑔 (a) 1{𝑐 ∈ 𝑛𝑔(b)}

|𝑛𝑔(a) | , (5)

where Overlap𝑛 measures the overlap of 𝑛-grams between two se-
quences,𝑛𝑔(·) denotes the list of𝑛-grams within a sequence. Higher
𝑛 values represent stricter standards for memorization quantifica-
tion, adhering to higher privacy requirements. Following [37], our
study chooses 𝑛 values of 3, 5, and 10.
Example 3. As shown in columns 1 and 4-6 of Table 1, in the first
row, given the prefix “This”, the number of the 3-gram matches be-
tween 𝑥≥𝑖 and 𝑥≥𝑖 is 2 (marked in green), leading to an Overlap3
score of 0.2222. After iterating through all the prefixes 𝑥<𝑖 , all the
Overlap3 values are averaged to obtain a final EL3 score of 0.1091.

3.2.2 Memorization Thresholds. Memorization in CLMs varies,
ranging from rarely reproduced sequences to verbatim repetition
easily exploitable by adversaries. Without clear boundaries between
them, it is difficult to prioritize and address genuine privacy vulner-
abilities. To this end, we empirically establish explicit memorization
thresholds based on the metrics MA and EL𝑛 :

𝑇MA =
1

|D′ |
∑︁

x′∈D′
MA(x′) , 𝑇EL𝑛 =

1
|D′ |

∑︁
x′∈D′

EL𝑛 (x′) , (6)

where D′ denotes a dataset consisting entirely of samples unseen
during the CLM’s training phase. Intuitively, a training sample

Scrub It Out! Erasing Sensitive Memorization in Code Language Models via Machine Unlearning ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 2: Memorization thresholds for the studied CLMs.

CLM MA (%) EL3 (%) EL5 (%) EL10 (%)

CodeParrot-small 45.57 17.66 10.82 5.49
CodeParrot 46.34 16.56 10.17 5.14
CodeGen-350M-Mono 48.79 18.24 11.03 5.92
CodeGen-2B-Mono 53.61 19.32 11.71 6.28
Qwen2.5-Coder-7B 40.99 15.65 12.45 8.82

with memorization scores below these thresholds, appearing as if
the model had never seen it, indicates safe memorization and is
thus resistant to extraction attacks. Conversely, samples exceeding
these thresholds indicate potential risks of exposure and leakage.
The resulting memorization thresholds for the studied CLMs are
presented in Table 2.
Unseen Dataset. For the Qwen2.5-Coder-7B model, we compile
D′ from two popular evaluation datasets, i.e., HumanEval [19] and
MBPP [6], which have been explicitly excluded from the CLM’s
training corpus via data decontamination [34]. For the CodeParrot
and CodeGen-Mono families, we compile D′ using a data crawling
tool provided by [67], collecting 10,000 high-quality de-duplicated
code files from GitHub repositories. Repository selection criteria
include: each must have at least 500 stars and be created after the
release dates of the CLMs. Moreover, to address potential concerns
that files might be copied from older versions already exposed to the
CLMs, we only collect code files written in programming languages
absent from the CLMs’ training, e.g., Ruby, PHP, Rust, and Lua. This
strategy ensures that D′ is high-quality and genuinely unseen by
the studied CLMs.

3.3 Sensitive Memorization Identification

Not all memorization poses privacy risks; for instance, retaining
public code snippets is far less concerning than memorizing private
keys. While several techniques have been developed to extract
memorized contents from CLMs [3, 35, 68], they mainly focus on
analyzing non-sensitive code memorization. Recent studies [33, 51]
have highlighted privacy risks by eliciting sensitive information
from CLMs using well-crafted prompts. However, they only reveal
small-scale, isolated examples of sensitive memorization, lacking a
systematic analysis of the broader extent of sensitive data retained
by CLMs. Thus, we aim to address the question: To what extent do
CLMs memorize sensitive information from their training data?
Sensitive Data Identification. To comprehensively identify sensi-
tive data within code (e.g., emails, IP addresses, and API/SSH keys),
we employ detect-secrets [71], a widely used regular expression-
based detection tool, to scan the entire codeparrot-clean-train
dataset. After filtering out local IPs and emails containing “exam-
ple”, we find that 939,665 out of 5,300,000 training samples (approx-
imately 18%) contain sensitive information.
Sensitive Memorization Quantification. We assess the memo-
rization levels of sensitive segments in identified samples using the
MA metric. MA is preferred over EL𝑛 due to its efficiency in token
matching, making it more suitable for large-scale analysis than
the 𝑛-gram approach of EL𝑛 . Given computational constraints, we
restrict our analysis to two relatively small models, i.e., CodeParrot-
small and CodeGen-350M-Mono, and limit the examined samples
to those containing sensitive data within a maximum token length

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CodeParrot-small

20k
40k
60k
80k

Fr
eq

ue
nc

y

Threshold: 0.4557

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CodeGen-350M-Mono

10k

20k

30k

Fr
eq

ue
nc

y

Threshold: 0.4879

Figure 2: The distribution of MA across sensitive data.

(e.g., 512). Moreover, only sensitive segments are considered in
this quantification; surrounding non-sensitive code is excluded. For
each sensitive segment, we prepend a fixed non-sensitive prefix
(up to 128 tokens) when computing memorization. For instances
containing multiple sensitive segments, we calculate the average
MA score across all segments. These measures allow us to complete
quantification on the full training dataset within 6 hours using a
single GPU equipped with 80GB of memory.

As shown in Figure 2, we find that 376,740 out of 473,994 train-
ing samples in CodeParrot-small and 363,806 out of 501,549 in
CodeGen-350M-Mono (approximately 7% of training data) exhibit
sensitive memorization, with MA scores exceeding the established
memorization thresholds.

Finding : CLMs such as CodeParrot-small and CodeGen-350M-
Mono memorize approximately 7% training samples contain-
ing sensitive data, posing considerable privacy risks.

Building upon this finding, we extend our analysis to additional
models, i.e., CodeParrot, CodeGen-2B-Mono, and Qwen2.5-Coder-
7B. For each studied CLM,we ultimately collect 10,000 highlymemo-
rized sensitive samples (e.g., MA ≥ 0.9), resulting in 50,000 samples
in total. We compile them into a SensitiveMemorization Dataset,
which documents the positions of all sensitive segments within each
code sample along with their corresponding memorization scores.
This dataset serves as the foundation for subsequent unlearning
experiments, providing a standardized benchmark for evaluation.
The overall dataset collection pipeline is illustrated in Figure 3.

4 Unlearning Techniques

Our preliminary study reveals that CLMs memorize substantial
sensitive data from training corpora. To mitigate this issue, we
explore unlearning techniques that enable targeted forgetting of
memorized content. We formally define the unlearning problem
for CLMs and introduce three gradient ascent-based unlearning
approaches: the vanilla method, the constraint-based method, and
our proposed CodeEraser.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhaoyang Chu, Yao Wan, Zhikun Zhang, Di Wang, Zhou Yang, Hongyu Zhang, Pan Zhou, Xuanhua Shi, Hai Jin, and David Lo

(b) Identifying Sensitive Memorization

(a) Building Memorization Thresholds

Memorization

ThresholdsGitHub

Repositories

crawl

Unseen Dataset

Ruby PHP

Rust Lua

Trained CLM

input

calculate

MA&EL

Training Dataset

detect-
secrets

regex

Sensitive Dataset

Emails Keys

IP Addresses

calculate MA

Memorization Distribution

threshold

Sensitive

Memorization

Figure 3: An illustration of the sensitive memorization detection pipeline.

4.1 Problem Statement

Forgetting, the inverse of memorization, is typically studied in the
context of catastrophic forgetting [40, 41], where models lose prior
knowledge when learning new tasks. These studies treat forgetting
as an undesirable trait in training. Recently, Jagielski et al. [36]
reinterpret forgetting positively, viewing it as a relaxed form of
differential privacy. However, they mainly examine passive forget-
ting during large-scale training. In contrast, our study embraces an
active form of forgetting, i.e., machine unlearning [14], which in-
tentionally modifies trained models to erase previously memorized
information. Conceptually, we define forgetting as a reduction in
the model’s memorization of specific training samples.

Formally, let 𝑓𝜃 be a CLM trained on a dataset D, and let D 𝑓 =

{x𝑓 } ⊂ D denote the forgotten set, where each forgotten sample
x𝑓 = (𝑥 𝑓1 ,𝑥

𝑓

2 ,. . . ,𝑥
𝑓

𝑁
) is a token sequence containing sensitive data.

The set size |D 𝑓 |=𝑘 represents the number of samples undergoing
unlearning simultaneously. The goal of unlearning is to update the
CLM to a new version, 𝑓 ′

𝜃
, that no longer retains any information

from each x𝑓 . Specifically, after unlearning, each x𝑓 should satisfy
the following conditions, appearing as if never seen by the CLM:

MA(x𝑓) ≤ 𝑇MA , EL𝑛 (x𝑓) ≤ 𝑇EL𝑛 . (7)

4.2 Gradient Ascent-Based Unlearning

Vanilla Unlearning. Gradient Ascent (GA) [13, 37, 45] is a simple
yet effective unlearning method designed to reduce the model’s
likelihood of predicting specific forgotten samples, thereby actively
encouraging the removal of their information. Specifically, for each
x𝑓 , GA reverses the standard autoregressive language modeling
objective by maximizing the negative log-likelihood, forcing the
CLM to deviate from its original predictions. Formally, as illus-
trated in Figure 4 (a), GA updates the unlearned CLM 𝑓 ′

𝜃
using the

following loss function:

L𝐺𝐴 (x𝑓) = −1 · L𝐿𝑀 (x𝑓) = log
𝑁∏
𝑖=1

𝑓 ′
𝜃
(𝑥 𝑓
𝑖
| 𝑥 𝑓1 , . . . , 𝑥

𝑓

𝑖−1) . (8)

Constraint-Based Unlearning. A key challenge in unlearning
is to remove targeted data without degrading the model’s original

utility. Directly applying gradient ascent to the CLM may risk eras-
ing unrelated yet valuable code knowledge. To address this, the
Constraint-Based Unlearning (CU) method [18, 42, 69, 70] seeks to
minimize the Kullback-Leibler (KL) divergence between the predic-
tions of the original CLM 𝑓𝜃 and the unlearned CLM 𝑓 ′

𝜃
on the data

to be retained, while maximizing divergence for the data targeted
for forgetting. Formally, given a retained set D𝑟 ={(x𝑟)} ⊂D, the
CLM is updated using the following contrastive loss:

L𝐾𝐿(x𝑓,x𝑟)=−
∑︁
x𝑓
𝐾𝐿(𝑓𝜃(x𝑓) | |𝑓 ′𝜃(x

𝑓))+ 𝛼 ·
∑︁
x𝑟
𝐾𝐿(𝑓𝜃(x𝑟) | |𝑓 ′𝜃(x

𝑟)) , (9)

where 𝛼 is a hyperparameter controlling the balance between for-
getting x𝑓 and retaining x𝑟 . Minimizing KL divergence on retained
data ensures alignment with the original predictions, while maxi-
mizing it on forgotten data actively encourages effective forgetting.
In practice, as illustrated in Figure 4 (b), this KL divergence-based
loss L𝐾𝐿 is typically combined with the GA-based loss L𝐺𝐴 for
collaborative optimization:

L𝐶𝑈 = L𝐺𝐴 (x𝑓) + 𝜆 · L𝐾𝐿 (x𝑓 ,x𝑟) , (10)

where the hyperparameter 𝜆 balances the intensity between gradi-
ent ascent updates and KL divergence-based constraints.
CodeEraser: Proposed Selective Unlearning. While tech-
niques like gradient ascent and KL divergence-based constraint
enable effective unlearning, they typically indiscriminately forget
entire code samples, unnecessarily removing non-sensitive con-
tent. Motivated by insights from our preliminary study, we propose
CodeEraser, an adapted unlearning method that selectively targets
and erases sensitive memorized segments (e.g., API keys) without
compromising the integrity and functionality of surrounding code.
This segmentation design builds on the tool-based identification
of sensitive elements within code (e.g., via detect-secrets) de-
scribed in Section 3.3, enabling accurate and targeted unlearning.

Formally, for each forgotten sample x𝑓 = (𝑥 𝑓1 ,𝑥
𝑓

2 ,. . . ,𝑥
𝑓

𝑁
) ∈ D 𝑓 ,

we segment sensitive sequences s𝑓 = (𝑠 𝑓1 ,𝑠
𝑓

2 ,. . . ,𝑠
𝑓
𝑚) from their non-

sensitive contexts c𝑓 = (𝑐 𝑓1 ,𝑐
𝑓

2 ,. . . ,𝑐
𝑓
𝑛). To achieve selective unlearn-

ing, we apply gradient ascent exclusively on s𝑓 to actively dimin-
ish their memorization, while applying gradient descent on c𝑓

to preserve their integrity. Accordingly, we apply a targeted KL
divergence-based constraint on sensitive segments s𝑓 rather than

Scrub It Out! Erasing Sensitive Memorization in Code Language Models via Machine Unlearning ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Unlearned

Model f


Original

Model f

Forgotten

Set f

GA LM= −

Gradient

Ascent

KL

GA

KL-Based

Constraint

KL-Based

Constraint

user_config = { ...
'email': '[Placeholder]',

Non-Sensitive Contexts

Sensitive Targets

su @ .com
rb 23

GA

LM
Descent

Ascent

KL

(a) Vanilla (b) Constraint-Based Unlearning (c) CodeEraser: Selective Unlearning

Forgotten

Set f

Forgotten

Set f

Retained

Set r

Diverge Align

Retained

Set r

Figure 4: An illustration of gradient ascent-based unlearning methods: (a) vanilla unlearning, (b) constraint-based unlearning,

and (c) our proposed CodeEraser. Personal details are masked for ethical considerations.

the entire sample x𝑓 . Specifically, as illustrated in Figure 4 (c), we
define the selective unlearning loss as follows:

L𝑆𝑈 = (L𝐺𝐴 (s𝑓) + 𝛾 · L𝐿𝑀 (c𝑓)) + 𝜆 · L𝐾𝐿 (s𝑓 ,x𝑟) , (11)

where the hyperparameter 𝛾 balances the trade-off between for-
getting s𝑓 and preserving c𝑓 . This selective framework precisely
restricts ascent updates to sensitive segments, minimizing the im-
pact of unlearning on the CLM’s broader utility.
Example 4. Given a piece of code snippet “user_config = {‘email’:
‘daniel@gmail.com’, ‘password’: ‘ABC’}”, the sensitive segments 𝑠 𝑓
are “daniel@gmail.com” and “ABC”, while the non-sensitive con-
texts 𝑐 𝑓 are “user_config = {‘email’: ‘[placeholder]’, ‘password’: ‘[place-
holder]’}”. This segmentation preserves the original sequential struc-
ture required by autoregressive CLMs.

To stabilize themax-min optimization of L𝐾𝐿 during unlearning,
we adopt an iterative training strategy. Specifically, we alternate
training epochs between the forgotten set D 𝑓 and the retained set
D𝑟 . This strategy ensures balanced training dynamics, preventing
either term from excessively dominating the optimization process.

4.3 Connections and Discussion

Here, we establish connections between our selective unlearning
framework and other methods in Figure 4. Specifically, when remov-
ing the segmentation between sensitive and non-sensitive parts and
setting the hyperparameters 𝛾 and 𝜆 in Eq. (11) to 0, the selective
unlearning loss collapses directly into the standard gradient ascent
loss defined in Eq. (8). In this scenario, the CLM indiscriminately
performs gradient ascent on entire code instances rather than selec-
tively targeting sensitive segments. Similarly, by removing segment-
level targeting in Eq. (11) and applying the KL divergence-based con-
straint to entire forgotten samples x𝑓 , the selective unlearning loss
reverts to the original constraint-based formulation in Eq. (10). In
this case, the constraint-based unlearning considers whole-sample
consistency, without explicitly distinguishing between sensitive
and non-sensitive segments. These derivations demonstrate that
our framework subsumes prior unlearning methods while extend-
ing them to support fine-grained, code-specific erasure of sensitive
memorized segments.

5 Experiments and Analysis

To evaluate the performance of various unlearning techniques for
CLMs, we investigate the following Research Questions (RQs):

• RQ1: Effectiveness and Efficiency. How do the unlearning
methods perform in terms of removing targeted sensitive infor-
mation from CLMs (effectiveness) with minimal computational
resources (efficiency)?

• RQ2: Model Utility Post-Unlearning. How do the unlearning
methods affect the original utility of CLMs, particularly the code
generation performance on the HumanEval benchmark?

• RQ3: Analysis on Forgotten Data. How do the characteristics
of forgotten data (e.g., the number of samples 𝑘 , their occurrence
frequency in training, and the types of sensitive segments) impact
unlearning performance?

• RQ4: Impact of Hyperparameters. How do hyperparameter
settings (e.g., learning rate, 𝛾 , 𝛼 , and 𝜆) impact unlearning effects?

5.1 Experimental Setup

Forgotten Set. Following [37], we build the forgotten set for each
studied CLM by randomly sampling 𝑘 instances from the corre-
sponding sensitive memorization dataset, which are then subjected
to unlearning. To reduce the potential bias of random selection, we
report the average result from 5 independent runs for each unlearn-
ing routine. Unless otherwise specified, we report experimental
results with a default setting of 𝑘 = 32. We examine various values
of 𝑘 from {8, 16, 32, 64, 128, 256, 512}, as detailed in Section 5.4, to
demonstrate CodeEraser’s scalability in handling varying num-
bers of unlearning requests from users.
Retained Set. The retained set is built to include non-targeted, non-
sensitive data, serving as a benchmark for measuring the CLM’s
memorization retention after the unlearning process. We leverage
a code benchmark [3] that offers 1,000 non-sensitive samples from
BigQuery [31]. These samples have been demonstrated to be mem-
orized by various CLMs, such as CodeParrot [24], CodeGen [50],
and InCoder [28], making them suitable for building the retained
set in our experiments. Specifically, for each studied CLM, we ex-
tract its corresponding memorized data and randomly sample an

equivalent number of 𝑘 instances to form the retained set.
Implementation Details. In our experiments, the maximum
token lengths are set to 512 for the forgotten set and 128 for the
unseen dataset and the retained set, with any excess truncated.
These lengths are chosen based on computational constraints while
ensuring sufficient data is available for analysis. For computing MA
and EL𝑛 scores, we adopt a greedy sampling strategy. Following [37],
we set the global batch size equal to 𝑘 during unlearning. When

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhaoyang Chu, Yao Wan, Zhikun Zhang, Di Wang, Zhou Yang, Hongyu Zhang, Pan Zhou, Xuanhua Shi, Hai Jin, and David Lo

Table 3: Evaluation of unlearning effectiveness. All values

are reported as percentages (with % symbol omitted).

CLM Method MA EL3 EL5 EL10 Red.

CodeParrot
-small

Original 99.74 98.55 98.12 97.97 -
Threshold 45.57 17.66 10.82 5.49 -
GA 30.71 10.17 7.07 4.18 86.85
CU 22.14 7.79 6.19 4.72 89.69
CodeEraser 18.69 6.69 5.78 5.18 90.82

CodeParrot

Original 99.69 98.90 98.36 97.62 -
Threshold 46.34 16.56 10.17 5.14 -
GA 27.53 6.33 4.21 3.47 89.54
CU 24.18 6.11 4.39 3.09 90.48
CodeEraser 15.22 6.36 5.40 4.65 92.01

CodeGen
-350M-Mono

Original 99.25 97.14 96.39 95.93 -
Threshold 48.79 18.24 11.03 5.92 -
GA 25.53 8.45 6.98 4.95 88.29
CU 18.65 6.98 5.73 4.88 90.75
CodeEraser 45.13 11.44 7.05 3.46 82.96

CodeGen
-2B-Mono

Original 99.89 99.79 99.76 99.70 -
Threshold 53.61 19.32 11.71 6.28 -
GA 17.95 6.80 5.52 4.83 91.21
CU 11.80 6.40 5.99 5.54 92.55
CodeEraser 31.66 10.01 7.73 6.05 86.11

Qwen2.5
-Coder-7B

Original 96.26 84.71 81.07 75.15 -
Threshold 40.99 15.65 12.45 8.82 -
GA 24.15 14.23 10.49 8.24 83.55
CU 16.63 8.77 6.84 5.48 89.16
CodeEraser 8.49 4.93 3.99 3.68 93.89

processing a group of 𝑘 instances, we average their MA and EL𝑛
scores to empirically decide whether they have been forgotten. The
learning rate is fixed at 3e-6, selected through empirical testing
from the range {1e-5, 8e-6, 5e-6, 3e-6, 1e-6}, and we maintain a
constant learning rate schedule throughout unlearning. Dropout
and weight decay rates are both set to 0 to avoid regularization that
might interfere with the unlearning process. We select 𝛼 = 1.0 from
{0.5, 0.8, 1.0, 1.2, 1.5}, and 𝛾 = 0.5 and 𝜆 = 0.1 from {0.1, 0.2, 0.3, 0.4,
0.5} through a systematic grid search, with detailed hyperparameter
analysis in Section 5.5.

5.2 RQ1: Effectiveness and Efficiency

We assess the effectiveness and efficiency of various unlearning
techniques when applied to the studied CLMs. In our context, ef-
fectiveness refers to the capability of the unlearning approach to
successfully erase specific sensitive information retained by the
CLM, while efficiency refers to the computational costs required to
achieve this unlearning.
Unlearning Effectiveness. To quantitatively evaluate the effec-
tiveness of unlearning, we calculate MA, EL3, EL5, and EL10 for
the sensitive data targeted for removal in the forgotten set. An un-
learning approach is deemed effective when the targeted sensitive
data becomes difficult to extract from the model post-unlearning,
characterized by MA and EL𝑛 scores falling below their respective
memorization thresholds defined in Section 3.2.2. We also re-
port the average memorization reduction rate of these metrics
post-unlearning (abbreviated as Red.).

CP-sm
all CP

CG-35
0M

CG-2B

Qwen
-C

od
er

200

400

600

800

1000

1200

1400

1600

1800

G
PU

 T
im

e
(s

)

71

31
8

97

58
7

13
03

67

37
4

11
3

65
2

15
63

52

33
9

59

45
3

15
34

CP-sm
all CP

CG-35
0M

CG-2B

Qwen
-C

od
er

20
40
60
80

100
120
140
160
180
200
220
240

Pe
ak

 G
PU

 M
em

or
y

(G
B

)

11

34 27

57

11
8

33

66

58

11
2

21
6

26

62

49

10
7

21
3

GA CU CodeEraser

Figure 5: Evaluation of unlearning efficiency.

As shown in Table 3, the results indicate that CodeEraser
achieves a substantial reduction in MA and EL𝑛 scores across all
models, successfully lowering them below the predetermined mem-
orization thresholds outlined in Table 2. For instance, with the
Qwen2.5-Coder-7B model, CodeEraser results in an average mem-
orization reduction of 93.89%. It is important to note that an un-
learning method is considered effective as long as it reaches the
forgetting criteria; it is not required to reduce more memorization
than the baselines (i.e., GA and CU), as over-unlearning could lead
to a loss of model utility.

Unlearning Efficiency. For efficiency, we measure the cumu-
lative GPU time required to perform unlearning updates on the
CLM until the memorization thresholds are reached for a group
of 𝑘 = 32 instances. Additionally, we monitor peak memory usage
across 4 GPUs during unlearning by leveraging PyTorch’s memory
check API, and report the total footprint as the sum of these val-
ues. These two metrics are chosen because they directly reflect the
computational resources consumed during unlearning.

As shown in Figure 5, with the Qwen2.5-Coder-7B model, our
proposed CodeEraser completes the unlearning process within
approximately 1500 seconds (averaging 46.88 seconds per sample),
with a peak memory usage of around 200GB. This cost is consider-
ably lower than alternatives such as differentially-private training
or retraining the CLM after de-duplication, which are reported to
typically require on the order of hundreds of A100 GPU days [37].
Moreover, unlike the baselines that focus on the unlearning of entire
code samples, CodeEraser exclusively targets the forgetting of spe-
cific sensitive data, enabling it to complete unlearning in a relatively
shorter duration. Although CodeEraser exhibits higher memory
usage than GA (due to additional training steps on the retained set),
it outperforms in terms of preserving the post-unlearning utility of
CLMs, which will be further discussed in Section 5.3.

Answer to RQ1: CodeEraser demonstrates effectiveness and
efficiency in erasing specific sensitive information from CLMs,
thereby reducing potential security and privacy risks without
incurring excessive computational costs.

Scrub It Out! Erasing Sensitive Memorization in Code Language Models via Machine Unlearning ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 4: Evaluation of model utility post-unlearning. All val-

ues are reported as percentages (with % symbol omitted). ↑ in-
dicates that higher values correspond to better preservation

of model utility. The best-performing unlearning method in

each column is highlighted in bold.

CLM Method P@1↑ P@5↑ P@10↑ Ret.↑

CodeParrot
-small

Original 3.48 4.56 4.96 -
GA 2.14 3.02 3.20 64.08
CU 2.62 3.43 3.66 74.77
CodeEraser 3.74 4.59 4.87 102.10

CodeParrot

Original 4.34 5.81 6.22 -
GA 2.08 3.29 3.83 55.38
CU 2.04 2.94 3.28 50.11
CodeEraser 3.86 5.08 5.63 88.96

CodeGen
-350M-Mono

Original 13.37 18.79 21.12 -
GA 11.68 16.59 18.51 87.76
CU 10.79 14.91 16.41 79.25
CodeEraser 13.36 18.02 19.96 96.78

CodeGen
-2B-Mono

Original 24.72 31.49 34.16 -
GA 21.20 28.34 31.40 89.23
CU 20.57 27.73 30.63 86.98
CodeEraser 23.00 29.91 32.94 94.82

Qwen2.5
-Coder-7B

Original 61.07 73.61 77.23 -
GA 40.67 53.81 57.63 71.44
CU 48.54 64.70 69.59 85.83
CodeEraser 61.65 73.41 76.69 99.99

5.3 RQ2: Model Utility Post-Unlearning

Ensuring robust privacy protections necessitates a delicate balance:
the CLM must selectively forget targeted sensitive information
to safeguard privacy without compromising its inherent capac-
ity to perform general coding tasks. We evaluate the efficacy of
CodeEraser in achieving this balance.

Setup. To evaluate the impact of unlearning on the CLM’s utility,
we adopt the HumanEval benchmark [19], a widely recognized
standard for assessing code generation performance in CLMs [10],
with over 95.9k monthly downloads on HuggingFace at the time
of writing. This benchmark measures the CLM’s ability to solve
programming tasks, where we report the Pass@1, Pass@5, and
Pass@10 scores [19], which measure the accuracy of generating
correct solutions within 1, 5, and 10 attempts for each task, respec-
tively (abbreviated as P@1, P@5, and P@10). By comparing these
scores pre- and post-unlearning, we can observe the changes in the
CLM’s general coding performance. To quantify these changes, we
also report the average performance retention rate across these
metrics post-unlearning (abbreviated as Ret.).

Results. As shown in Table 4, CodeEraser has only aminor impact
on model utility compared to the baselines. Take Qwen2.5-Coder-
7B as an example, CodeEraser preserves 99.99% of the CLM’s
code generation performance. This lesser degree of degradation
can be attributed to CodeEraser’s sensitive information-targeted
selective unlearning mechanism, which minimizes the impact of
unlearning on model utility, ensuring that the code knowledge
outside the specified forgotten set remains intact.

Among the baselines, a notable performance decline is observed
in most cases when applying GA to the studied CLMs. This de-
cline may stem from the gradient ascent updates, which, although
performed only on the forgotten set, tend to soften the probability
distribution of generating each token across the vocabulary. This
results in a more uniform distribution, which inadvertently dilutes
the CLM’s inherent knowledge base and reduces its overall utility.
Moreover, the CU approach does not demonstrate the expected
level of utility preservation compared to GA in some cases. This
may be due to the alignment of model behavior on shorter instances
(128 tokens) being insufficient to offset the impact of forgetting
longer instances (512 tokens). Instead, it could affect the stability
of the model’s updates, further compromising the integrity of the
CLM’s knowledge base. Given this unexpected phenomenon, we
plan to investigate it further in future work to fully understand the
dynamics of unlearning in CLMs.

Answer to RQ2: CodeEraser has only a minor impact on the
CLM’s coding performance compared to baselines, validating
the efficacy of our selective unlearning mechanism in preserving
model utility while achieving targeted forgetting of sensitive
information in code.

5.4 RQ3: Analysis on Forgotten Data

Recent studies have highlighted the importance of training data
characteristics, such as duplication frequency and sensitive data
type, in influencing memorization patterns of CLMs [3, 15, 68].
These findings reveal the intricate nature of memorization in CLMs
and imply a potential impact of such data attributes on the efficacy
of unlearning. To examine this, we evaluate CodeEraser on the
CodeParrot model, focusing on targeted sensitive data samples that
vary in number, duplication frequency, and type. For each setting,
we report the average results of the HumanEval scores pre- and
post-unlearning in 5 independent runs.
Influence of Forgotten Sample Number 𝑘 . Our analysis exam-
ines how varying the number of forgotten samples (𝑘) influences
the efficacy of CodeEraser. As shown in Figure 6 (a), CodeEraser
remains robust when unlearning a moderate number of sensitive
samples (e.g., 𝑘 ≤ 128), with the CLM effectively preserving its
utility post-unlearning. However, as the size of the forgotten set in-
creases significantly (e.g., 𝑘 = 256 or 𝑘 = 512), utility scores such as
P@5 and P@10 exhibit a noticeable decline. These results indicate
potential scalability limitations in CodeEraser, particularly for
larger-scale unlearning tasks involving extensive sensitive datasets
(e.g., 10,000 samples). Ensuring effective unlearning at scale while
minimizing utility degradation remains a key challenge, which we
leave for future work.
Influence of Data Duplication. To examine the impact of data du-
plications on unlearning, we utilize the duplication frequency statis-
tics of training samples provided by the codeparrot-clean-train
dataset. We roughly divide duplication frequencies into four ranges:
[5, 10), [10, 25), [25, 50), and [50,), which allows us to assess how
varying levels of data duplication, from relatively low to very high
frequencies, affect the unlearning process. For each duplication
level, we randomly select 𝑘 = 16 samples that contain sensitive
information to perform unlearning.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhaoyang Chu, Yao Wan, Zhikun Zhang, Di Wang, Zhou Yang, Hongyu Zhang, Pan Zhou, Xuanhua Shi, Hai Jin, and David Lo

P@1 P@5 P@10

1.0
2.0
3.0
4.0
5.0
6.0
7.0

H
um

an
Ev

al
 (%

)

(a) Influence of Forgotten Sample Number k
Sample
Number

Orig.
8
16
32
64
128
256
512

P@1 P@5 P@10

1.0
2.0
3.0
4.0
5.0
6.0
7.0

H
um

an
Ev

al
 (%

)

(b) Influence of Data Duplication

Duplication Range
[5,10) [10,25) [25,50) [50,)

P@1 P@5 P@10

1.0
2.0
3.0
4.0
5.0
6.0
7.0
(c) Influence of Sensitive Data Type

Sensitive Data Type
Email IP Key

Figure 6: Analysis on forgotten data. Dashed lines “- -” repre-

sent the initial HumanEval scores of the CodeParrot model.

As shown in Figure 6 (b), the frequency of duplication signifi-
cantly influences the CLM’s utility post-unlearning. Interestingly,
we can see that CodeEraser exhibits higher utility-preserving per-
formance at the extremes of the duplication spectrum (i.e., [5, 10)
and [50,)) compared to the intermediate duplication levels. This
phenomenon may be explained by the nature of the data involved.
Low-duplicated memorized samples, potentially acting as outliers
within the data distribution [16], may have a less entrenched influ-
ence on the model, making their removal less disruptive. On the
other hand, highly duplicated samples are likely to cause model
overfitting, meaning that their removal could reduce redundancy
and mitigate overfitting, resulting in a minor impact on overall
model performance. These findings suggest that the impact of un-
learning on model utility is not uniform across different levels of
data duplication, and understanding these dynamics is crucial for
optimizing our unlearning approach in the future.
Influence of Sensitive Data Type. To evaluate the influence of
distinct sensitive data types (e.g., email, IP address, and API/SSH
Key) on the unlearning process, we leverage the constructed sensi-
tive memorization dataset for the CodeParrot model. For each type,
we randomly select 𝑘 = 32 samples containing only the correspond-
ing sensitive data for unlearning.

As shown in Figure 6 (c), the influence on the CLM’s utility post-
unlearning varies depending on the type of sensitive data. This
variation is likely due to differences in how the CLM memorizes
these data types. Surprisingly, the removal of API/SSH keys re-
sults in an improvement in model performance. This improvement
may be attributed to the fact that, unlike emails and IP addresses,
specific secret keys are usually atypical patterns within the data
and are less likely to be heavily duplicated in the training dataset,
making them outliers in the data distribution. Such atypical data

1e-6 3e-6 5e-6 8e-6 1e-5
Learning Rate

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

H
um

an
Ev

al
 (%

)

0.1 0.2 0.3 0.4 0.53.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

0.5 0.8 1.0 1.2 1.53.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

H
um

an
Ev

al
 (%

)

0.1 0.2 0.3 0.4 0.53.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

Pass@1 Pass@5 Pass@10

Figure 7: Parameter analysis of learning rate, 𝛾 , 𝛼 , and 𝜆.

outliers often distract the model and negatively impact its overall
generalization. Therefore, eliminating them can refine the CLM’s
representation space and shift its focus to more representative data,
thereby enhancing overall performance. Given these preliminary
insights, future work will explore the effects of unlearning across a
broader spectrum of sensitive data types.

Answer to RQ3: The characteristics of the targeted sensitive
data, e.g., number, duplication frequency, and type, significantly
influence the CLM’s utility post-unlearning. These findings re-
veal that unlearning effects are conditioned by data attributes,
motivating future exploration of unlearning dynamics and ro-
bust strategies to minimize negative impacts on models.

5.5 RQ4: Impact of Hyperparameters

We analyze the impact of hyperparameters, including the learning
rate and regularization factors (i.e., 𝛾 , 𝛼 , and 𝜆), on model utility
post-unlearning. As illustrated in Figure 7, the learning rate sub-
stantially influences model utility after unlearning, with excessively
large values resulting in noticeable declines in utility metrics (e.g.,
P@5 and P@10). This underscores the importance of carefully tun-
ing the learning rate to balance forgetting effectiveness against
maintaining model performance. In contrast, varying the hyper-
parameters 𝛾 , 𝛼 , and 𝜆 within reasonable ranges results in only
minor changes in post-unlearning utility, indicating robustness
and flexibility of our method toward these parameters. Nonethe-
less, moderate values for these parameters are recommended, as
overly aggressive settings may still negatively impact utility or
insufficiently support effective forgetting. Based on these insights,
we select empirically determined optimal values for all hyperpa-
rameters to balance the trade-off between effective forgetting and
model performance retention. The final settings employed in our
experiments are detailed in Section 5.1.

Scrub It Out! Erasing Sensitive Memorization in Code Language Models via Machine Unlearning ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Answer to RQ4: The learning rate substantially influences
model utility after unlearning and must be carefully tuned. Reg-
ularization hyperparameters (𝛾 , 𝛼 , 𝜆) have comparatively minor
impacts, allowing greater flexibility in their selection.

6 Threats to Validity

Threats to Internal Validity. Internal validity concerns whether
our methodology introduces biases or errors that may distort the
results. Our study identifies sensitive segments within code us-
ing a regular expression-based method and then quantifies their
memorization. However, this method constrains both the accuracy
and coverage of secret detection, since regex rules can capture
only a limited set of patterns. To mitigate this threat, we employ
detect-secrets [71], a state-of-the-art tool widely used for secret
detection in large-scale code bases. This tool covers a broad spec-
trum of high-risk categories (e.g., API keys, tokens, and credentials)
that are most relevant to real-world security incidents. Future work
may incorporate additional detection methods [7, 27, 33] to broaden
coverage; however, such extensions are unlikely to alter our princi-
pal finding that CLMs manifest substantial sensitive memorization.
Threats to External Validity. External validity concerns the
extent to which our findings can be generalized to other settings.
This study focuses on three CLM families, i.e., CodeParrot, CodeGen,
and Qwen2.5-Code, spanning 110M to 7B parameters; however, the
results may not generalize to other CLMs. To alleviate this threat, we
select these families since they are widely adopted in research and
practice, making them representative of the current CLM landscape.
Moreover, the observed patterns are consistent across different
model sizes within these families, suggesting that our findings are
not tied to a specific scale. This limitation is also shared by many
prior studies, which typically examine a few representative families
rather than exhaustively covering all models. Thus, while additional
CLM families might provide further evidence, our methodological
choices sufficiently support external validity.

7 Related Work

Memorization in LMs. Memorization, often seen as the antithesis
of generalization, arises from overfitting, leading models to remem-
ber specific details of their training data [3, 25]. This phenomenon
raises remarkable privacy concerns in the context of LMs, as these
models may memorize and regurgitate sensitive information verba-
tim. Extensive research has been undertaken to understand memo-
rization in LMs qualitatively and quantitatively [8, 15–17, 55, 56, 72].
Recent research [3, 35, 68] has also explored memorization within
CLMs, offering empirical studies to examine the extent to which
CLMs inadvertently memorize and disclose their training data. Ad-
ditionally, recent studies [33, 51] have highlighted privacy risks
by extracting sensitive information from CLMs using well-crafted
prompts. Following this line, in this paper, we conduct a pioneer-
ing investigation into mitigating sensitive memorization in CLMs
through machine unlearning.
Machine Unlearning. Machine unlearning, first proposed by
Cao et al. [14], also known as selective forgetting [30] or data re-
moval/deletion [29, 32], aims to remove the influence of a specific

set of training samples from the trained model. Existing studies in
this field can be categorized into two groups: 1) Exact Unlearning:
Exact unlearning seeks to remove specific samples’ influence from
the model completely. A straightforward method is to retrain the
whole model from scratch after removing targeted data from the
training set. However, this method is computationally infeasible for
large datasets. Despite efforts to reduce the computational cost, they
either primarily cater to simple machine learning models [14, 29]
or rely on training data partitioning [11, 20], limiting their appli-
cability to complex and large CLMs. 2) Approximate Unlearning:
Approximate unlearning has recently emerged as a promising alter-
native, prioritizing efficiency and cost by relaxing the requirement
for exactness. Existing methods typically adjust the model’s weights
via gradient-based updates to approximate the weights of the model
retrained from scratch [23, 30, 32, 37]. Building on this paradigm,
gradient ascent-based methods [18, 37, 69] have emerged as a dom-
inant direction for efficient unlearning by reversing the learning of
specific data, which also constitutes the focus of this study. How-
ever, they often indiscriminately erase entire text instances rather
than selectively targeting specific sensitive data (e.g., API keys em-
bedded in code). While Wang et al. [64] proposed a heuristic that
designates high-perplexity tokens in plain text as privacy tokens for
unlearning, this approach is unsuitable for source code: identifiers
are often assigned unique names with high perplexity, resulting in
erroneous removal, whereas actual secrets such as API key strings
typically follow predictable patterns with lower perplexity and may
therefore escape removal. In contrast, our approach employs a spe-
cialized tool (i.e., detect-secrets) to precisely identify secrets in code,
enabling targeted unlearning while preserving the integrity and
functionality of the surrounding code.

8 Conclusion

In this paper, we pioneer the use of machine unlearning to erase
sensitive memorization in CLMs. We first construct a novel dataset
by systematically identifying and assessing high-risk code instances
in the CLM’s training data. Then, we introduce CodeEraser, a se-
lective unlearning approach that uses gradient ascent to remove
sensitive information while preserving surrounding non-sensitive
code via gradient descent. Additionally, CodeEraser employs a
KL divergence-based constraint to maintain model utility post-
unlearning. Extensive experiments on CodeParrot, CodeGen-Mono,
and Qwen2.5-Coder demonstrate that CodeEraser effectively elim-
inates sensitive memorization while preserving overall model per-
formance. Our study highlights the potential of unlearning in rein-
forcing data privacy in CLMs, providing a practical technique to
actively mitigate the harms of model memorization.

Data Availability. All the experimental data and code used in this
paper are available at https://github.com/CGCL-codes/naturalcc/
tree/main/examples/code-unlearning.

Acknowledgment

Thiswork is supported by theMajor Program (JD) of Hubei Province
(Grant No. 2023BAA024). We would like to thank all the anonymous
reviewers for their insightful comments.

https://github.com/CGCL-codes/naturalcc/tree/main/examples/code-unlearning
https://github.com/CGCL-codes/naturalcc/tree/main/examples/code-unlearning

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Zhaoyang Chu, Yao Wan, Zhikun Zhang, Di Wang, Zhou Yang, Hongyu Zhang, Pan Zhou, Xuanhua Shi, Hai Jin, and David Lo

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). Association for Computing Machinery, New York, NY, USA,
308–318.

[2] Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premku-
mar Devanbu, and Arie van Deursen. 2023. Extending Source Code Pre-Trained
Language Models to Summarise Decompiled Binaries. In Proceedings of the 2023
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER ’23). 260–271.

[3] Ali Al-Kaswan, Maliheh Izadi, and Arie van Deursen. 2024. Traces of Memorisa-
tion in Large Language Models for Code. In Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE ’24). IEEE Computer
Society, Los Alamitos, CA, USA, 862–862.

[4] Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. 2022.
Large-Scale Differentially Private BERT. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing (EMNLP ’22). Association for
Computational Linguistics, Abu Dhabi, United Arab Emirates.

[5] Shushan Arakelyan, Rocktim Das, Yi Mao, and Xiang Ren. 2023. Exploring
Distributional Shifts in Large Language Models for Code Analysis. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing
(EMNLP ’23). Association for Computational Linguistics, Singapore, 16298–16314.

[6] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V.
Le, and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv preprint arXiv:2108.07732 (2021).

[7] Setu Kumar Basak, Lorenzo Neil, Bradley Reaves, and Laurie Williams. 2023.
SecretBench: A Dataset of Software Secrets. In Proceedings of the 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR ’23). 347–351.

[8] Stella Biderman, Usvsn Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf,
Quentin Anthony, Shivanshu Purohit, and Edward Raff. 2023. Emergent and
Predictable Memorization in Large Language Models. In Proceedings of the 37th
Annual Conference on Neural Information Processing Systems (NeurIPS ’23). Curran
Associates Inc., Red Hook, NY, USA, Article 1219, 19 pages.

[9] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle
O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang Sutawika, and Oskar Van
Der Wal. 2023. Pythia: A Suite for Analyzing Large Language Models Across
Training and Scaling. In Proceedings of the 40th International Conference on Ma-
chine Learning (ICML ’23). JMLR.org, Article 102, 34 pages.

[10] Bigcode. 2024. Big Code Models Leaderboard. https://huggingface.co/spaces/
bigcode/bigcode-models-leaderboard. Accessed: 2025-09-01.

[11] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine Unlearning. In Proceedings of the 2021 IEEE Symposium on Security and
Privacy (SP ’21). 141–159.

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Proceedings of the 34th Annual Conference on Neural Information Processing
Systems (NeurIPS ’20). Curran Associates, Inc., Red Hook, NY, USA, Article 159,
1877–1901 pages.

[13] George-Octavian Bărbulescu and Peter Triantafillou. 2024. To Each (Textual
Sequence) Its Own: Improving Memorized-Data Unlearning in Large Language
Models. In Proceedings of the 41st International Conference on Machine Learning
(ICML ’24). Article 121, 21 pages.

[14] Yinzhi Cao and Junfeng Yang. 2015. Towards Making Systems Forget with
Machine Unlearning. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (SP ’15). IEEE Computer Society, USA, 463–480.

[15] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian
Tramèr, and Chiyuan Zhang. 2023. Quantifying Memorization Across Neural
Language Models. In Proceedings of the 11th International Conference on Learning
Representations (ICLR ’23).

[16] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. 2019.
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks. In Proceedings of the 28th USENIX Conference on Security Symposium
(SEC ’19). USENIX Association, USA, 267–284.

[17] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson,
Alina Oprea, and Colin Raffel. 2021. Extracting Training Data from Large Lan-
guage Models. In Proceedings of the 30th USENIX Conference on Security Sympo-
sium (SEC ’21). USENIX Association, 2633–2650.

[18] Jiaao Chen and Diyi Yang. 2023. Unlearn What You Want to Forget: Efficient
Unlearning for LLMs. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing (EMNLP ’23). Association for Computational
Linguistics, Singapore, 12041–12052.

[19] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, SamMcCandlish, Ilya Sutskever, andWojciech Zaremb. 2021. Evaluating
Large Language Models Trained on Code. arXiv preprint arXiv:2107.03374 (2021).

[20] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph Unlearning. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’22). Association for
Computing Machinery, New York, NY, USA, 499–513.

[21] CodeParrot. 2022. Codeparrot-clean-train. https://huggingface.co/datasets/
codeparrot/codeparrot-clean-train. Accessed: 2025-09-01.

[22] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,
Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2024. Evaluating Large
LanguageModels in Class-Level Code Generation. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering (ICSE ’24). Association for
Computing Machinery, New York, NY, USA, Article 81, 13 pages.

[23] Ronen Eldan and Mark Russinovich. 2023. Who’s Harry Potter? Approximate
Unlearning in LLMs.

[24] Hugging Face. 2022. CodeParrot. https://huggingface.co/codeparrot. Accessed:
2025-09-01.

[25] Vitaly Feldman. 2020. Does Learning Require Memorization? A Short Tale about
a Long Tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing (STOC ’20). Association for Computing Machinery, New York, NY,
USA, 954–959.

[26] Vitaly Feldman and Chiyuan Zhang. 2020. What Neural Networks Memorize
and Why: Discovering the Long Tail via Influence Estimation. In Proceedings of
the 34th Annual Conference on Neural Information Processing Systems (NeurIPS
’20). Curran Associates Inc., Red Hook, NY, USA, Article 242, 11 pages.

[27] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan Zhang. 2022. Automated
Detection of Password Leakage from Public GitHub Repositories. In Proceedings of
the 44th International Conference on Software Engineering (ICSE ’22). Association
for Computing Machinery, New York, NY, USA, 175–186.

[28] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. In Proceedings of the 11th
International Conference on Learning Representations (ICLR ’23).

[29] Antonio A. Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. 2019.
Making AI Forget You: Data Deletion in Machine Learning. In Proceedings of the
33rd Annual Conference on Neural Information Processing Systems (NeurIPS ’19).
Curran Associates Inc., Red Hook, NY, USA, Article 316, 14 pages.

[30] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. 2020. Eternal Sunshine
of the Spotless Net: Selective Forgetting in Deep Networks. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’20).
9301–9309.

[31] Google. 2016. BigQuery. https://console.cloud.google.com/marketplace/details/
github/github-repos. Accessed: 2025-09-01.

[32] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. 2020.
Certified Data Removal from Machine Learning Models. In Proceedings of the
37th International Conference on Machine Learning (ICML ’20). JMLR.org, Article
359, 11 pages.

[33] Yizhan Huang, Yichen Li, Weibin Wu, Jianping Zhang, and Michael R. Lyu. 2024.
Your Code Secret Belongs to Me: Neural Code Completion Tools Can Memorize
Hard-Coded Credentials. Proceedings of the ACM on Software Engineering 1, FSE,
Article 111 (2024), 23 pages.

[34] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu
Liu, Jiajun Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang,
An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong
Feng, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang Lin. 2024.
Qwen2.5-Coder Technical Report. arXiv preprint arXiv:2409.12186 (2024).

[35] Daniel Huynh. 2023. StarCoder Memorization Experiment Highlights Privacy
Risks of Fine-Tuning On Code. https://huggingface.co/blog/dhuynh95/starcoder-
memorization-experiment. Accessed: 2025-09-01.

[36] Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine
Lee, Nicholas Carlini, Eric Wallace, Shuang Song, Abhradeep Guha Thakurta,
Nicolas Papernot, and Chiyuan Zhang. 2023. Measuring Forgetting of Memorized
Training Examples. In Proceedings of the 11th International Conference on Learning
Representations (ICLR ’23).

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/datasets/codeparrot/codeparrot-clean-train
https://huggingface.co/datasets/codeparrot/codeparrot-clean-train
https://huggingface.co/codeparrot
https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
https://huggingface.co/blog/dhuynh95/starcoder-memorization-experiment
https://huggingface.co/blog/dhuynh95/starcoder-memorization-experiment

Scrub It Out! Erasing Sensitive Memorization in Code Language Models via Machine Unlearning ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

[37] Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen
Logeswaran, and Minjoon Seo. 2023. Knowledge Unlearning for Mitigating Pri-
vacy Risks in Language Models. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (ACL ’23). Association for Computa-
tional Linguistics, Toronto, Canada, 14389–14408.

[38] Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi
Jin, and Wenpin Jiao. 2024. Self-Planning Code Generation with Large Language
Models. ACM Transactions on Software Engineering and Methodology 33, 7, Article
182 (2024), 30 pages.

[39] Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022. Deduplicating Training
Data Mitigates Privacy Risks in Language Models. In Proceedings of the 39th
International Conference on Machine Learning (ICML ’22). PMLR, 10697–10707.

[40] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and Christo-
pher Kanan. 2018. Measuring Catastrophic Forgetting in Neural Networks. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence (AAAI ’18/IAAI
’18/EAAI ’18). AAAI Press, Article 415, 9 pages.

[41] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2017. Overcoming Catastrophic Forgetting in Neural Networks.
Proceedings of the National Academy of Sciences 114, 13 (2017), 3521–3526.

[42] Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou.
2023. Towards Unbounded Machine Unlearning. In Proceedings of the 37th An-
nual Conference on Neural Information Processing Systems (NeurIPS ’23). Curran
Associates Inc., Red Hook, NY, USA, Article 95, 31 pages.

[43] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas
Eck, Chris Callison-Burch, and Nicholas Carlini. 2022. Deduplicating Training
Data Makes Language Models Better. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (ACL ’22). Association for
Computational Linguistics, Dublin, Ireland, 8424–8445.

[44] Gen Li, Yao Wan, Hongyu Zhang, Zhou Zhao, Wenbin Jiang, Xuanhua Shi, Hai
Jin, and Zheng Wang. 2025. Dataflow-Guided Neuro-Symbolic Language Models
for Type Inference. In Proceedings of the 42nd International Conference on Machine
Learning (ICML ’25).

[45] Bo Liu, Qiang Liu, and Peter Stone. 2022. Continual Learning and Private Un-
learning. In Proceedings of The 1st Conference on Lifelong Learning Agents, Vol. 199.
PMLR, 243–254.

[46] Michael Meli, Matthew R. McNiece, and Bradley Reaves. 2019. How Bad Can It
Git? Characterizing Secret Leakage in Public GitHub Repositories. In Proceedings
of the 26th Annual Network and Distributed System Security Symposium (NDSS
’19). The Internet Society.

[47] Tomás Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khu-
danpur. 2010. Recurrent Neural Network Based LanguageModel. In Proceedings of
the 11th Annual Conference of the International Speech Communication Association
(INTERSPEECH ’10). ISCA, 1045–1048.

[48] Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-
Chung Liew, Hongzhi Yin, and Quoc Viet Hung Nguyen. 2025. A Survey of
Machine Unlearning. ACM Transactions on Intelligent Systems and Technology
(2025).

[49] Yuqing Nie, Chong Wang, Kailong Wang, Guoai Xu, Guosheng Xu, and Haoyu
Wang. 2025. Decoding Secret Memorization in Code LLMs Through Token-Level
Characterization. In Proceedings of the 47th IEEE/ACM International Conference
on Software Engineering (ICSE ’25). IEEE, 2880–2892.

[50] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In Proceedings of the 11th
International Conference on Learning Representations (ICLR ’23).

[51] Liang Niu, Shujaat Mirza, ZaydMaradni, and Christina Pöpper. 2023. CodexLeaks:
Privacy Leaks from Code Generation Language Models in GitHub Copilot. In
Proceedings of the 32nd USENIX Conference on Security Symposium (SEC ’23).
USENIX Association, Anaheim, CA, USA, Article 120, 18 pages.

[52] State of California. 2023. California Consumer Privacy Act (CCPA). https:
//oag.ca.gov/privacy/ccpa. Accessed: 2025-09-01.

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. OpenAI
Blog 1, 8 (2019), 9.

[54] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton-Ferrer,
Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar,
Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2023. Code Llama: Open Foundation Models for Code. arXiv preprint
arXiv:2308.12950 (2023).

[55] Ali Satvaty, Suzan Verberne, and Fatih Turkmen. 2024. Undesirable Memorization
in Large Language Models: A Survey. arXiv preprint arXiv:2410.02650 (2024).

[56] Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Agha-
janyan. 2022. Memorization Without Overfitting: Analyzing the Training Dy-
namics of Large Language Models. In Proceedings of the 36th Annual Conference
on Neural Information Processing Systems (NeurIPS ’22). Curran Associates Inc.,
Red Hook, NY, USA, Article 2773, 17 pages.

[57] European Union. 2018. General Data Protection Regulation (GDPR). https://gdpr-
info.eu. Accessed: 2025-09-01.

[58] Michael Veale, Reuben Binns, and Lilian Edwards. 2018. Algorithms that Remem-
ber: Model Inversion Attacks and Data Protection Law. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 2133
(2018), 20180083.

[59] Eduard Fosch Villaronga, Peter Kieseberg, and Tiffany Li. 2018. Humans For-
get, Machines Remember: Artificial Intelligence and the Right to Be Forgotten.
Computer Law & Security Review 34, 2 (2018), 304–313.

[60] Yao Wan, Zhangqian Bi, Yang He, Jianguo Zhang, Hongyu Zhang, Yulei Sui,
Guandong Xu, Hai Jin, and Philip Yu. 2024. Deep Learning for Code Intelligence:
Survey, Benchmark and Toolkit. ACM Comput. Surv. 56, 12, Article 309 (2024),
41 pages.

[61] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022.
What Do They Capture? A Structural Analysis of Pre-Trained Language Models
for Source Code. In Proceedings of the 44th International Conference on Software
Engineering (ICSE ’22). Association for Computing Machinery, New York, NY,
USA, 2377–2388.

[62] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering (ASE ’18). Association for Computing
Machinery, New York, NY, USA, 397–407.

[63] Chenlong Wang, Zhaoyang Chu, Zhengxiang Cheng, Xuyi Yang, Kaiyue Qiu, Yao
Wan, Zhou Zhao, Xuanhua Shi, Hai Jin, and Dongping Chen. 2025. CodeSync:
Synchronizing Large Language Models with Dynamic Code Evolution at Scale.
In Proceedings of the 42nd International Conference on Machine Learning (ICML
’25).

[64] Lingzhi Wang, Xingshan Zeng, Jinsong Guo, Kam-Fai Wong, and Georg Gottlob.
2025. Selective Forgetting: Advancing Machine Unlearning Techniques and
Evaluation in Language Models. Proceedings of the AAAI Conference on Artificial
Intelligence 39, 1 (2025), 843–851.

[65] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
Program Repair in the Era of Large Pre-Trained Language Models. In Proceedings
of the 45th International Conference on Software Engineering (ICSE ’23). IEEE Press,
1482–1494.

[66] Chunqiu Steven Xia and Lingming Zhang. 2024. Automated Program Repair
via Conversation: Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’24). Association for Computing Machinery, New
York, NY, USA, 819–831.

[67] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
Systematic Evaluation of Large Language Models of Code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming (MAPS
’22). Association for Computing Machinery, New York, NY, USA, 1–10.

[68] Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun
Han, and David Lo. 2024. Unveiling Memorization in Code Models. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 72, 13 pages.

[69] Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and
Xiang Yue. 2024. Machine Unlearning of Pre-trained Large Language Models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (ACL ’24). Association for Computational Linguistics, Bangkok, Thailand,
8403–8419.

[70] Yuanshun Yao, Xiaojun Xu, and YangLiu. 2024. Large LanguageModel Unlearning.
In Proceedings of the 38th Annual Conference on Neural Information Processing
Systems (NeurIPS ’24). Curran Associates, Inc., 105425–105475.

[71] Yelp. 2024. Detect-secrets. https://github.com/Yelp/detect-secrets. Accessed:
2025-09-01.

[72] Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian
Tramèr, and Nicholas Carlini. 2023. Counterfactual Memorization in Neural Lan-
guage Models. In Proceedings of the 37th Annual Conference on Neural Information
Processing Systems (NeurIPS ’23). Curran Associates Inc., Red Hook, NY, USA,
Article 1708, 42 pages.

[73] Tianqing Zhu, Gang Li, Wanlei Zhou, and Philip S. Yu. 2017. Differentially Private
Data Publishing and Analysis: A Survey. IEEE Transactions on Knowledge and
Data Engineering 29, 8 (2017), 1619–1638.

[74] Tianqing Zhu, Dayong Ye, Wei Wang, Wanlei Zhou, and Philip S. Yu. 2022. More
Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence.
IEEE Transactions on Knowledge and Data Engineering 34, 6 (2022), 2824–2843.

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu
https://gdpr-info.eu
https://github.com/Yelp/detect-secrets

	Abstract
	1 Introduction
	2 Background
	2.1 Language Models
	2.2 Memorization in Language Models

	3 Preliminary Study
	3.1 Study Subjects
	3.2 Memorization Quantification
	3.3 Sensitive Memorization Identification

	4 Unlearning Techniques
	4.1 Problem Statement
	4.2 Gradient Ascent-Based Unlearning
	4.3 Connections and Discussion

	5 Experiments and Analysis
	5.1 Experimental Setup
	5.2 RQ1: Effectiveness and Efficiency
	5.3 RQ2: Model Utility Post-Unlearning
	5.4 RQ3: Analysis on Forgotten Data
	5.5 RQ4: Impact of Hyperparameters

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

