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Can Large Language Models Serve as Evaluators for
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Abstract—Code summarization facilitates program compre-
hension and software maintenance by converting code snippets
into natural-language descriptions. Over the years, numerous
methods have been developed for this task, but a key challenge
remains: effectively evaluating the quality of generated summaries.
While human evaluation is effective for assessing code summary
quality, it is labor-intensive and difficult to scale. Commonly used
automatic metrics, such as BLEU, ROUGE-L, METEOR, and
BERTScore, often fail to align closely with human judgments.
In this paper, we explore the potential of Large Language
Models (LLMs) for evaluating code summarization. We propose
CODERPE (Role-Player for Code Summarization Evaluation),
a novel method that leverages role-player prompting to assess
the quality of generated summaries. Specifically, we prompt an
LLM agent to play diverse roles, such as code reviewer, code
author, code editor, and system analyst. Each role evaluates
the quality of code summaries across key dimensions, including
coherence, consistency, fluency, and relevance. We further explore
the robustness of LLMs as evaluators by employing various
prompting strategies, including chain-of-thought reasoning, in-
context learning, and tailored rating form designs. The results
demonstrate that LLMs serve as effective evaluators for code
summarization methods. Notably, our LLM-based evaluator,
CODERPE , achieves an 81.59% Spearman correlation with
human evaluations, outperforming the existing BERTScore metric
by 17.27%.

Index Terms—Code Summarization, Large Language Models,
Role Player, Model Evaluation

I. INTRODUCTION

Code summarization, which summarizes code snippets into
natural-language descriptions, plays an important role in pro-
gram comprehension and software maintenance [1], [2]. Current
approaches to code summarization heavily leverage techniques
from Natural Language Processing (NLP), with the aim of
translating code snippets from one linguistic representation to
another. Recently, this trend has been further bolstered by the
emergence of Large Language Models (LLMs) [3], e.g., GPT-
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4 [4], Gemini [5], and Llama [6], owing to their remarkable
capabilities in NLP.

Despite significant advancements in generating code sum-
maries, methods for evaluating their quality have not kept pace.
Human evaluation remains the gold standard for assessing
code summaries; however, it is labor-intensive and difficult
to scale. Previously, in alignment with the NLP research
trajectory, numerous automatic metrics, such as BLEU [7],
ROUGE [8], METEOR [9], and BERTScore [10], have been
widely adopted for evaluating code summarization models.
These metrics assess model performance by automatically
measuring the similarity between generated summaries and
reference (or gold-standard) summaries, which are typically
derived from comments provided by developers. However,
studies have shown that these automated metrics exhibit a
relatively low correlation with human evaluations [11], [12].

Inspired by the remarkable capabilities of LLMs in un-
derstanding and generating natural language, recent studies
propose leveraging LLMs directly as reference-free evalua-
tors [13]–[20]. This research rests on the premise that LLMs can
assess candidate outputs based on their generation probabilities
without requiring a reference summary, positing that LLMs
can assign higher probabilities to outputs that are both fluent
and of high quality. Building on these insights, this paper aims
to investigate the following question: Can LLMs effectively
serve as evaluators for code summarization?

A Motivating Example. Figure 1 illustrates an example
aimed at providing motivation for our introduced LLM-based
evaluator by comparing it with current automatic metrics. In
this example, a code snippet accompanied by its corresponding
comment, alongside the summary generated by ChatGPT [21],
is presented. Upon employing automatic metrics such as BLEU,
ROUGE, METEOR, and BERTScore, it is evident that the
scores are relatively low, suggesting subpar quality in the
generated summary. Nevertheless, upon manual inspection, the
quality of the summary generated by ChatGPT is actually
high. Specifically, the phrase “a 10% discount for members”
in the generated summary correlates directly to the variable
“isMember” at line 2 and “0.9” at line 3 in the provided code.
This can also reveal the strong understanding and reasoning
capabilities of LLMs over source code. We attribute the low
scores from automatic metrics to the differences in textual
structure and phrasing between the generated summary and
the reference summary. Conversely, our LLM-based evaluator
showcases its ability to effectively assess the quality of
generated summarizations, demonstrating significant alignment
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1.  public double calculDiscount(double
    price, boolean isMember) {
2.      if (isMember) {
3.          return price * 0.9;  
4.      } 
5.      return price;
6.  }

Human
Coherence 4   
Fluency 4  
Consistency 4    
Relevance 4

LLM-based (Our) 
Coherence 3   
Fluency 4   
Consistency 4   
Relevance 4   

BLEU-DCOM 0                
BLEU-FC 0                     
BLEU-DC 0.19     
BLEU-CN 0.20                 
BLEU-NCS 0.11             
BLEU-RC 0           
ROUGE  0.35                   
METEOR 0.25                
BERTScore 0.49

Existed Metrics 

Generated: This function computes price with a 10% 
discount for members and standard pricing for 
non-members.
Reference: Calculates a discounted price for 
members. Members receive a 10% discount, while 
non-members pay the regular price.

Figure 1: A code snippet with reference and generated
summaries, along with scores from existing metrics, human
evaluation, and LLMs.

with human evaluation metrics.
Our Work. In this paper, we present a pioneering empirical
study aiming at investigating the capabilities of LLMs in eval-
uating code summarization models. In particular, we introduce
an evaluation method, termed CODERPE (Role-Player for Code
Summarization Evaluation), designed to quantify the quality
of generated code summaries. We prompt an LLM agent to
perform a range of roles, including code reviewer, code author,
code editor, and system analyst. Each role is tasked with evaluat-
ing the quality of generated code summaries along individual di-
mensions such as coherence, consistency, fluency, and relevance.
By analyzing the outcomes, we determine the most proficient
role for each dimension to ensure a more precise and specialized
evaluation. In our experiments, we concentrate on three specific
LLMs: text-davinci-003 [22], gpt-3.5-turbo [22],
and gpt-4 [23]. We assess the performance of six code
summarization models, namely CodeNN [1], Deepcom [24],
Astattgru [2], Rencos [25], NCS [26], and ChatGPT [27].
We structure our empirical study around the following three
Research Questions (RQs).
RQ1: How does LLM-based evaluator CODERPE align with
human evaluation compared to traditional metrics? We
explore LLMs’ capabilities in assessing code summarization,
both with and without reference summaries, by examining
their alignment with human evaluation alongside conventional
metrics such as BLEU, ROUGE, METEOR, and BERTScore.
RQ2: How does the LLM-based evaluator CODERPE
perform under varying evaluation settings? We analyze

different prompting strategies that may affect the performance
of LLMs in evaluating code summarization, including the role-
player design, rating form design, chain-of-thought prompting,
and in-context example selection. Our analysis provides clear
guidelines for employing LLMs to automate the evaluation of
code summarization.
RQ3: How do existing neural models for code summa-
rization perform using our proposed CODERPE? We
re-evaluate the effectiveness of six prominent neural models
for code summarization tasks, namely CodeNN, Deepcom,
Astattgru, Rencos, NCS, and ChatGPT, utilizing our LLM-
based evaluator, CODERPE.
Takeaway Implications. In this paper, we outline several
important implications to be noted: (1) Overall, our CODERPE
demonstrates notable effectiveness in serving as evaluators
for code summarization, exhibiting a correlation of 81.59% to
human assessment, even in the absence of reference summaries.
(2) The effectiveness of LLMs in assessing code summarization
relies heavily on carefully crafted role-player engagement and
prompting strategies. We recommend integrating a balanced
selection of in-context learning examples and increasing eval-
uation iteration frequency. Additionally, employing chain-of-
thought processes can significantly enhance fluency assessment.
(3) With our LLM-based evaluator CODERPE, ChatGPT out-
performs other models by producing summaries that maintain
semantic accuracy while offering diverse phrasing, closely
aligning with human evaluations.
Contributions. This paper makes the following contributions.
• To the best of our knowledge, we perform a pioneering

investigation into the ability of LLMs to assess code
summarization. Furthermore, we introduce a novel evaluation
approach called CODERPE which leverages a roleplayer-
based prompting strategy to evaluate the coherence and
effectiveness of generated summaries, based on an under-
standing of the code itself, rather than relying on reference
ground truth.

• We extensively conduct experiments to compare CODERPE
with existing metrics in evaluating neural code summariza-
tion, employing various prompting strategies. Our experi-
mental findings demonstrate that the LLM-based evaluator
substantially enhances the correlation with human judgement
across multiple criteria.

• We reassess the efficacy of six prominent neural models (i.e.,
CodeNN, Deepcom, Astattgru, Rencos, NCS, and ChatGPT)
in the realm of code summarization, leveraging our novel
LLM-based evaluation framework, CODERPE.

II. BACKGROUND

A. Existing Code Summarization Evaluation Metrics

We classify prevailing evaluation metrics for code summariza-
tion into three categories: n-gram-based metrics, embedding-
based metrics, and human evaluation metrics.

1) N -gram-based Metrics: The objective of n-gram-based
metrics is to calculate the similarity between the generated
summary and the reference summary through the counting of
shared n-grams. Examples include BLEU [7], ROUGE-L [8],
and METEOR [9].
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the   cat the   mat the

a  cat sat  on  the  mata  cat sat  on  the mat

the   cat the mat thethe cat the mat the

a  cat sat  on  the mat

(a) BLEU (b) ROUGE (c) METERO (d) BERTScore

Candidate

Reference a cute cat

a cat

Figure 2: An illustration of existing evaluation metrics for code summarization.

BLEU [7]. BLEU (Bilingual Evaluation Understudy) is a
traditional neural machine translation metric that calculates av-
erage n-gram precision with reference sentences and penalizes
overly short translations.

pn =

∑
wn∈c min

(
Cc(wn), max

j=1,··· ,n
Crj (wn)

)
∑

wn∈c Cc(wn)
, (1)

where c and r represent a candidate and its reference sen-
tence, respectively. wn is an n-gram, and Cc(wn) denotes its
frequency in c. The BLEU score is then computed as:

BLEU = BP ∗ exp

(
N∑

n=1

αn log pn

)
, (2)

where N = 4, pn denotes the precision for n-grams up to
N , and αn represents the positive weighting assigned to each
n-gram, and a brevity penalty BP penalizes the short sentences.

In practice, various implementations of the BLEU exist,
each with specific modifications to handle n-gram precision
differently. BLEU-CN is a sentence BLEU metric applying the
Laplace-like smoothing [28] to the precision scores pn for n ⩾
2, by both the numerator and denominator by 1. BLEU-DM
and BLEU-DC are two metrics that apply another smoothing
method which has been implemented in the NLTK toolkit1 as
“method 0”, and “method 4”, respectively. Similar to BLEU-
CN, BLEU-NCS [26] applies a Laplace-like smoothing method,
incrementing the numerator and denominator of all precision
values pn by 1. BLEU-RC [25] is another unsmoothed sentence
BLEU variant designed specifically to prevent division-by-zero
errors. Instead of traditional smoothing, it adds between 10 and
15 to the numerator, and between 9 and 10 to the denominator
of pn. BLEU-FC is an unsmoothed corpus-level BLEU metric
based on NLTK, which aggregates n-gram matches across all
hypothesis-reference pairs [2], [29].
EXAMPLE 1. In the example illustrated in Figure 2(a) for
calculating BLEU, the candidate sentence yields unigram
counts of “the”, “cat”, and “mat” as 3, 1, and 1, respectively,
with a total count of 5. For reference, the relevant unigrams
“the,” “cat,” and “mat” each have a count of 1. By taking the
minimum counts between the candidate and reference, we sum
to 3. Thus, with n = 1, we have p1 = 0.6, yielding a BLEU
score of 0.49.

ROUGE-L [8]. ROUGE-L [30]–[32] quantifies the similarity
between a candidate summary and a reference summary by
identifying their Longest Common Subsequence (LCS). This
metric emphasizes the importance of maintaining the sequential

1https://pypi.org/project/nltk/3.2.4/

order of information. The calculation of the ROUGE-L score
and its components is defined as follows:

P =
LCS(c, r)

len(c)
, R =

LCS(c, r)

len(r)

ROUGE-L =
(1 + β2) · P ·R

R+ β2 · P
.

(3)

Here, c and r denote the generated candidate and reference
summaries, respectively, and β is a parameter that adjusts the
balance between precision and recall.
EXAMPLE 2. As the example shown in Figure 2 (b), with
consideration of the longest common sequence of words is “cat
the mat”, we can get LCS(c, r) = 3, then P = 0.6, and R =
0.5. When β = 1, ROUGE-L equals to 0.54.

METEOR. METEOR, a recall-oriented metric, evaluates how
well the model captures reference content by matching words
between candidate and reference sentences and computing the
harmonic mean of precision and recall, calculated as follows:

METEOR = max
j=1,··· ,n

(
10PR

R+ 9P

)(
1− 1

2
(
c

u
)3
)

, (4)

where P and R denote unigram precision and recall, c is the
count of matched chunks, and u represents matched unigrams.
EXAMPLE 3. As illustrated in Figure 2 (c), the alignment
between the candidate and reference sentences produces two
coherent chunks: “cat” and “the mat”, resulting in a total of
three matched unigrams. With a precision (P ) of 0.6 and recall
(R) of 0.5, the METEOR score is calculated as 0.5.

2) Embedding-based Metrics: While n-gram-based met-
rics assess semantic similarity through overlapping tokens,
embedding-based metrics like BERTScore [10] compare the
embeddings of generated and reference summaries.

BERTScore [10]. BERTScore measures sentence similarity
using BERT embeddings [10], matching each token in the
candidate sentence to tokens in the reference. It tokenizes
sentences into words or subwords and represents tokens as em-
beddings using a pre-trained BERT model, e.g., RoBERTa [33].
Specifically, BERTScore computes a pairwise similarity matrix
by taking the inner product of these embeddings, yielding a pre-
normalized cosine similarity. Precision is defined as the average
of the highest similarity scores for tokens in the candidate
sentence, while recall is the average of the highest scores
for tokens in the reference sentence. The final BERTScore is
computed as the harmonic mean of precision and recall.
EXAMPLE 4. In Figure 2(d), using the RoBERTa model, we
compute a cosine similarity matrix between the words of the
candidate and reference sentences. Precision is computed by
averaging the maximum similarity scores for each word in the
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Prompt for evaluation task

K Demonstration
Examples 

Test Item

CoT

Role Image
As a code reviewer, you ensure the coherence of the code summary.
Task Description
You will be given one summary written for a source code. Your task is 
to rate the summary from coherence aspect.
Evaluation steps
1. Read the source code carefully and understand its main intent.
2. Read the code summary and check if it accurately describe the code.
3. Assign a score for coherence on a scale of 0 to 4.
Source Code
System.out.println("Hello, World!")
Generated Summary
This Java code snippet uses System.out.println to display the message
"Hello, World!" on the console.
Evaluation Form (score only)
4
Source Code
System.out.println(5 + 10);
Generated Summary
Calculate the sum of 5 and 10, then print the result.
Score[To be generated]

Multi-Roleplayer

Figure 3: An example of the prompt design to elicit LLMs as
a code evaluator taking a “code reviewer” role.

candidate, yielding a value of (0.87+0.93)/2 = 0.90. Recall is
calculated by averaging the maximum similarity scores for each
word in the reference, resulting in (0.87 + 0.48 + 0.93)/3 =
0.76. The BERTScore, computed as the harmonic mean of a
precision of 0.9 and a recall of 0.76, yields a value of 0.82.

3) Human Evaluation Metrics: In human evaluation, human
assessors are typically presented with pairs of references
and model-generated outputs. The assessors then evaluate the
outputs based on predefined criteria such as fluency, coherence,
and overall understanding. Often, a 5-point scale, ranging
from 1 to 5 with options like “Strongly Disagree”, “Disagree”,
“Neutral”, “Agree”, and “Strongly Agree” is employed, allowing
assessors to express their judgments on a numerical scale.
Aggregating these human judgments yields scores that reflect
the perceived quality of the generated text. However, the
expense associated with hiring professional evaluators makes
human evaluation difficult to scale. Furthermore, human
evaluation metrics introduce subjectivity, necessitating efforts to
mitigate bias and ensure consistency in the evaluation process.

B. Large Language Models

Prompting. The advent of LLMs is shifting the learning
paradigm from the traditional “pre-train and fine-tune” to
a novel “pre-train, prompt, and predict” approach. In this
framework, downstream tasks are reformulated using textual
prompts to align with the original LLM training, rather than
through full fine-tuning. In our specific scenario, involving a
summary and a code snippet, we can construct a prompt as
follows: “[SUMMARY], [SOURCE CODE], Please rate the
coherence of the generated summary based on the source code”,
where [SUMMARY] signifies the model-generated summary,
and [SOURCE CODE] represents the code snippet.
In-Context Learning (ICL). ICL is a special form of
prompt-based learning that leverages demonstration examples
in prompts to promote the model’s performance. Specifically,
given a test question xt, ICL retrieves k examples related
to xt from the task dataset as demonstrations and uses the
prompt function f to transform these examples, creating a set

of demonstration examples Dk = {f(xi, yi), . . . , f(xk, yk)}.
Then, the LLMs predict ŷt based on the task description I and
example set Dk.

Chain-of-Thought (CoT). CoT [34] is a prompting technique
that enhances LLM performance on complex reasoning tasks
by incorporating intermediate reasoning steps into ICL prompts
to guide the model toward the final output. Specifically, the
CoT prompting strategy augments each demonstration example
⟨x, y⟩ in ICL with a chain-of-thought prompt CoT , constructing
a triplet prompt ⟨x,CoT, y⟩.

Multi-Role Player. LLMs have demonstrated the capability
to simulate human behavior through role-playing, adapting
to diverse roles across contexts. Recent studies leverage
this versatility, from simulating character personalities in
gaming [35] to aiding consensus-building in robotics [36],
and facilitating debate evaluations in multi-agent systems [17].
In this work, we engage LLMs in expert roles to elicit their
ability in code summary evaluation.
EXAMPLE 5. Figure 3 showcases a prompt design that casts
an LLM in the role of a “code reviewer”. The figure details five
key components of LLMs: 1) a role, which assigns the expected
identity and function of the LLM during the task, 2) a task
description that clearly articulates the goal, 3) evaluation steps
that segment the task into manageable parts, 4) k demonstration
examples that provide a model for performing the task, and 5)
a test example for the LLM to assess.

III. LLMS AS CODE SUMMARIZATION EVALUATORS

This section presents CODERPE, a novel evaluation method
that employs a role-player prompting strategy to assess the
quality of generated summaries, accommodating both reference-
based and reference-free scenarios, as shown in Figure 4.

A. Multi-Role Player Design

The core idea of CODERPE is designing a multi-role player
prompting strategy. Specifically, we prompt an LLM agent to
play diverse roles such as code reviewer, code author, code
editor, and system analyst. Each role is required to evaluate
the quality of generated code summaries, focusing on one
dimension at a time, such as coherence, consistency, fluency,
and relevance. The schema of role profile prompt is presented
as ⟨role description, role dimension⟩. We replace the role
description slot with a variety of roles (e.g., code reviewer,
original code author, code editor, and system analyst) and
investigate their performance on the specific role dimension.
The slot of role dimension could be filled with descriptions of
various dimensions (e.g., coherence, consistency, fluency, and
relevance) to guide the roles to behave. The specific descriptions
are as follows.

Coherence Dimension: Ensure that the summary captures
the primary functionality and logic of the code without
introducing any additional or unrelated content.

4



Code Reviewer

Original Code Author

Code Editor

Systems Analyst

Coherence
Consistency

Fluency
Relevance

CodeSummary

0 1 2 3 4
0 1 2 3 4

0 1 2 3 4
0 1 2 3 4

Role Profile
[Role Description] As a Code Reviewer, serving as an experienced developer,
[Role Dimension] you ensure the coherence of the code summary, ensuring …
Task Description
You will be given one summary written for a source code. Your task is to rate …
Evaluation Criteria
[Aspect Criteria] Coherence (0-4) - The summary should exhibit clear structu… 
Evaluation Steps (optional)
1. Read source code … 2. Read code summary … 3. Assign a score for … 
Demonstration
[Source Code] public ZipEntry(String name) { Objects.requireNonNull(name, …
[Reference][Generated Summary] creates a new zip entry with the name 
[Evaluation Form] Score only
[Score] 3
Evaluation Item
[Source Code] public static String formatPercent(int downloadSize, int fileSize ...
[Reference][Generated Summary] calculates a rgb to to on comma to 
[Evaluation Form] Score only

LLM-based 
Evaluator

Figure 4: An overview of our proposed framework for prompting LLMs as diverse evaluators for code summarization.

Consistency Dimension: Guarantee that the summary re-
mains consistent with the original code, accurately capturing
its primary functionality and logic without adding any
unrelated content.
Fluency Dimension: Focus on ensuring that the summary
is written smoothly, with clear sentences and appropriate
wording.
Relevance Dimension: Concentrate on the business or
functional relevance of the code, ensuring that the summary
captures the key significance of the code within the larger
system or project.

B. Prompting Strategies

To clarify the evaluation task for LLMs, we provide a task
description stating, “you will be given one summary written
for a source code and your task is to rate the summary on one
metric”. Subsequently, we investigate various prompt strategies
to enhance the performance of LLMs.

1. Read the source code carefully and understand its main
functionality and key operations.
2. Read the code comments and compare them to the source
code. Check if the comments accurately describe the main
functionality and key operations of the code, and present
them in a clear and logical order.
3. Assign a score for coherence on a scale of 0 to 4, based
on the Evaluation Criteria.

1) CoT: Considering the evaluation task, detailed evaluation
instructions can guide the annotator in inferring the rating
score. We follow the CoT strategies [14] to prompt LLM to
generate detailed evaluation steps on its own. Specifically, we
incorporate the evaluation step illustrated in Figure 4, detailing
the reasoning process to derive the final score. The specific
stages within the evaluation step are outlined above.

2) ICL: To enhance LLMs’ performance in the evaluation
task, we provide them with selected annotated examples. As
illustrated in Figure 4, we employ a demonstration prompt,
which can be extended by adjusting the number of examples,
denoted as K. Each example is meticulously linked to a

specific evaluation dimension and rated on a scale of 0 to 4.
These examples comprise a code snippet, an optional reference
summary, a generated summary, a specific rating form, and an
associated human-assigned score.

3) Rating Forms: Lastly, we feed LLMs the generated
summary for evaluation, along with its source code and an
optional reference summary, ending with a evaluation form
slot in the evaluation item prompt. We explore diverse scoring
formats to guide LLMs to output ratings. In addition to
the traditional score-only form, where LLMs output only a
numerical score, we introduce two more nuanced approaches
based on the evaluation guidelines detailed in [16]: the
analyze-rate form and the rate-explain form. The analyze-
rate form requires LLMs to process the reasoning behind their
assessment before giving a score, whereas the rate-explain form
prompts LLMs to score first and then justify their evaluation.
Specifically, we replace the evaluation form slot with diverse
form descriptions as follows.

Score-only Form: “Score only”.
Analyze-rate Form: “Answer by starting with ‘Analysis’ to
analyze the given example regarding the evaluation criteria
as concisely as possible, and then give the numeric rating
on the next line by ‘Rating’”.
Rate-explain Form: “Answer by starting with ‘Rating’ and
then give the explanation of the rating on the next line by

‘Rationale’”.

IV. EXPERIMENTS

We assess the performance of LLMs as evaluators for the
code summarization task by addressing the following Research
Questions (RQs):
• RQ1: Performance of CODERPE Evaluator. To what

extent does the LLM-based evaluator CODERPE align with
human evaluation compared to traditional metrics?

• RQ2: Influence of Evaluator Settings. How does the LLM-
based evaluator CODERPE perform across different settings,
such as evaluator types, number of demonstration examples,
turns, and prompt strategies?

5



Table I: The overall performance of code summarization by employing CODERPE backend by gpt-4 across various role
players, compared with conventional metrics.

Metric Coherence Consistency Fluency Relevance Average
τ ρ τ ρ τ ρ τ ρ τ ρ

Existing Metrics
BLEU-DM 25.58% 53.85% 30.3% 63.06% 24.41% 51.67% 30.40% 63.26% 27.67% 57.96%
BLEU-FC 25.56% 53.85% 30.30% 63.06% 24.41% 51.67% 30.40% 63.26% 27.67% 57.96%
BLEU-DC 42.21% 59.50% 51.24% 70.40% 39.70% 56.50% 51.54% 70.63% 46.17% 64.26%
BLEU-CN 38.08% 53.83% 45.58% 62.00% 36.76% 52.21% 45.40% 62.52% 41.46% 57.64%
BLEU-NCS 32.86% 46.93% 34.56% 48.83% 32.43% 46.68% 34.51% 48.78% 33.59% 47.81%
BLEU-RC 25.56% 53.85% 30.30% 63.06% 24.41% 51.67% 30.40% 63.26% 27.67% 57.96%
ROUGE-L 33.80% 46.58% 47.39% 62.72% 30.65% 42.71% 47.86% 63.30% 39.93% 53.83%
METEOR 38.10% 53.29% 52.11% 69.32% 34.44% 48.70% 53.16% 70.26% 44.45% 60.39%
BERTScore 44.61% 59.52% 55.10% 70.59% 41.38% 56.03% 55.72% 71.14% 49.20% 64.32%
LLM-based Evaluators
Reference-based
Code Reviewer 58.51% 80.86% 60.29% 83.39% 52.19% 80.29% 60.85% 84.38% 57.96% 82.23%
Original Code Author 55.19% 77.92% 59.37% 82.71% 51.07% 80.79% 59.76% 83.23% 56.35% 81.16%
Code Editor 57.07% 79.46% 59.26% 83.17% 52.02% 81.8% 60.54% 83.06% 57.22% 81.87%
Systems Analyst 57.17% 79.71% 58.68% 82.01% 49.88% 77.98% 61.69% 84.95% 56.86% 81.16%
Reference-Free
Code Reviewer 59.34% 82.31% 58.63% 82.68% 50.98% 80.48% 56.96% 80.89% 56.48% 81.59%
Original Code Author 57.49% 81.03% 57.88% 82.16% 49.83% 78.56% 55.78% 80.07% 55.25% 80.46%
Code Editor 60.77% 83.38% 56.74% 80.38% 51.34% 80.40% 55.84% 79.22% 56.17% 80.85%
System Analyst 60.24% 83.09% 57.97% 81.54% 49.98% 78.54% 55.31% 78.61% 55.88% 80.45%

• RQ3: Re-Evaluation of Current Models. How do exist-
ing neural models for code summarization perform when
evaluated using our proposed LLM-based CODERPE?

A. Datasets and Models to Re-Evaluate
1) Datasets: We conduct experiments using TL-

CodeSum [37], a widely used dataset for code summarization,
following [11]. The dataset contains 87,136 Java code-summary
pairs from 9,732 GitHub projects (2015–2016) with at least
20 stars and is split into training, validation, and test sets in
an 8:1:1 ratio. To evaluate the correlation between automated
metrics and human judgments, we utilize the 300 annotated
summaries provided by [11] as the ground-truth labels.

2) Models to Re-Evaluate: In our experiments, we re-
evaluate the following six code summarization models: Co-
deNN [1] is an early neural model for code summarization,
which encodes source code into context vectors and then
generates summaries using an attention mechanism. Deep-
com [24] linearizes source code by traversing its abstract
syntax tree and employs an LSTM-based model to translate the
traversal into a summary. Astattgru [2] employs two recurrent
neural networks to encode both the lexical and syntactic
information of source code. NCS [26] utilizes a Transformer-
based model to generate summaries for code. Rencos [25]
incorporates similar code snippets retrieved from the training
dataset to enhance the code summarization model. ChatGPT
(e.g., gpt-3.5-turbo) [27] denotes the ChatGPT-based
model for code summarization via prompting. The re-evaluation
results are shown in Sec. IV-E.

B. Evaluation Criteria
1) Dimensions to Assess a Code Summary: We evaluate

generated code summaries across four key dimensions [38]:
• Coherence (0-4). The summary should be logically orga-

nized, with a clear flow of ideas from sentence to sentence,
forming a coherent description of the source code.

• Consistency (0-4). The summary must align with the facts
within the source code, e.g., specific statements, avoiding
unsupported or hallucinated content.

• Fluency (0-4). The summary should be grammatically
correct, well-structured, and free from repetition, formatting
issues, and capitalization errors that impede readability.

• Relevance (0-4). The summary should capture the essen-
tial information from the source code, with penalties for
redundancies and excessive details.

Following [12], we engage 15 annotators—9 senior undergrad-
uates and 6 graduate students, all with advanced English profi-
ciency and 5+ years of software development experience—to
ensure stable and reproducible evaluation scores. Each annotator
rates 300 samples on a 0-4 scale for coherence, consistency,
fluency, and relevance of generated summaries based on the
corresponding code snippets. We calculate Kendall’s Tau to
verify agreement among the 15 annotators. Then, we average
their scores for each generated summary.

2) Metrics to Assess the Alignment with Human: We
calculate the correlation between automatic evaluation met-
rics with human scores employing Kendall-Tau correlation
coefficient [39] and Spearman correlation coefficient [40].

Kendall-Tau Correlation Coefficient (τ ). This metric evalu-
ates the ordinal association between the datasets. It provides a
robust measure of the ordinal association between two measured
quantities. For two datasets X and Y each with n data points,
the Kendall-Tau correlation is defined as:

τ =
2

n(n− 1)

∑
i<j

sgn(xi − xj) · sgn(yi − yj) , (5)

where n is the number of pairs, and xi, xj , yi, yj are the ranks
of the data points in the two datasets, X and Y, respectively.

Spearman Correlation Coefficient (ρ). It is particularly
useful when the data does not conform to a normal distribution
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Figure 5: Performance of evaluators across various LLMs in the reference-free scenario. Here, “davinci” stands for
“text-davinci-003”, “turbo” represents “gpt-3.5-turbo”, and “gpt-4” remains unchanged.
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Figure 6: Impact of demonstrations in LLM-based evaluator by text-davinci-003 in the reference-free scenario.
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Figure 7: Impact of turns in LLM-based evaluator by text-davinci-003 in the reference-free scenario.

or when the relationship between variables is non-linear but
monotonic. Spearman correlation ρ is given by:

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
, (6)

where di is the difference between the ranks of corresponding
variables, and n is the total number of observations.

C. RQ1: Performance of CODERPE Evaluator

We investigate LLM-based evaluators by assigning diverse
role-players, such as code reviewers, original code authors, code
editors, and systems analysts, to assess code summarization
across four dimensions: coherence, consistency, fluency, and
relevance. We evaluate the performance of CODERPE in its
basic mode. This mode includes role profiles, task descriptions,
evaluation criteria, demonstrations, and evaluation items. The
default setting uses four demonstration examples. It then pro-
ceeds with a single rating round in a score-only format. We em-
ploy gpt-4 as the backbone model and conduct experiments
using the same dataset and summarization models—CodeNN,
Deepcom, Astattgru, NCS, and Rencos—utilized in previous
work [11]. To ensure a fair comparison, we adhere to the
methodology of prior work [11] and evaluate 300 randomly
sampled summaries generated by these models on the TL-
CodeSum dataset. Table I presents the results of experiments
employing LLM-based evaluators across various role players,
compared with conventional metrics. The results demonstrate
a notable superiority of our proposed LLM-based evaluators in
aligning with human assessments from different aspects (i.e.,

coherence, consistency, fluency, and relevance), significantly
outperforming conventional metrics (i.e., BLEU, ROUGE,
METEOR, and BERTScore). Significantly, it is crucial to
observe that these exceptional performances are achieved under
both conditions, with and without the necessity of reference
summaries, a requirement intrinsic to conventional metrics.
Notably, on average, our proposed CODERPE, acting in the
capacity of a code reviewer, surpasses the state-of-the-art
BERTScore metric. This enhancement is evident in the increase
of the Spearman correlation score from 64.32% to 82.23% with
references, and to 81.59% without references, affirming the
efficacy of the LLM-based evaluator in the context of code
summarization. Additionally, we can see that reference-based
evaluations outperform reference-free evaluations with minimal
differences. This indicates that reference-free assessments are
effective, as the scores are not strongly dependent on the
reference, showing that LLMs can objectively evaluate code
summaries under our framework.

Answer to RQ1. Our proposed CODERPE demonstrates
a superior correlation with human scores across various
dimensions, including coherence, consistency, fluency, and
relevance, surpassing existing metrics.

D. RQ2: Influence of Evaluator Settings

1) Influence of Evaluator Types: We examine the im-
pact of using different LLMs for evaluating code sum-
marization, specifically the GPT-3.5 series models (i.e.,
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Table II: The correlation of different prompting strategies on LLM-based evaluator backend by text-davinci-003 with
human evaluation.

Ablations Coherence Consistency Fluency Relevance Average
CoT Forms τ ρ τ ρ τ ρ τ ρ τ ρ
✓ Score only 48.61% 72.48% 43.76% 67.89% 44.11% 71.78% 50.12% 71.44% 46.65% 70.89%
× Score only 50.08% 73.63% 47.39% 70.91% 43.13% 69.83% 52.31% 75.31% 48.23% 72.42%
× Rate-explain 41.37% 66.02% 46.13% 70.29% 38.18% 63.71% 45.95% 70.98% 42.90% 67.75%
× Analyze-rate 50.27% 71.2% 46.84% 69.46% 45.68% 66.16% 53.89% 75.9% 49.17% 70.68%

text-davinci-003 and gpt-3.5-turbo) and GPT-4
(i.e., gpt-4). text-davinci-0031 provides high-quality
outputs with reliable instruction-following ability, while
gpt-3.5-turbo offers extended context length suitable for
conversational applications. gpt-4 demonstrates high accuracy
in complex problem-solving, making it effective for both
interactive and traditional tasks. Experimental results across
various LLMs in the reference-free scenario are presented in
Figure 5. Obviously, the gpt-4 model exhibits a superior
performance over the gpt-3.5 series of models. Moreover,
the text-davinci-003 demonstrates well-rounded perfor-
mance across overall evaluations. While gpt-4 outperforms
the gpt-3.5 series, its higher API cost should be considered.
Thus, we recommend choosing different LLMs as evaluators
based on performance needs and budget considerations.

2) Influence of Number of Demonstration Examples:
To analyze the impact of demonstration examples on our
proposed LLM-based evaluator for code summarization, we
target the text-davinci-003 model and vary the number
of demonstration examples used: 0, 4, and 8. Figure 6
presents the results for varying numbers of demonstration
examples. Notably, using 4 demonstration examples generally
yields superior performance, with an average improvement
of 3.59% in Spearman correlation compared to evaluations
without demonstration examples. Thus, we recommend this
configuration for enhanced evaluation performance.

3) Influence of Turns: We examine rating generability and
robustness by varying the number of turns and averaging scores
across rounds. Specifically, we explore the impact of turns
on text-davinci-003 evaluators when assessing code
summarization by varying the number of turns from 1 to
3. From Figure 7, it is evident that a higher number of turns
generally correlates with improved performance for LLM-based
evaluators. Specifically, the average scores derived from three
turns approximate human scores, with a Kendall-Tau correlation
of 55.54% and a Spearman correlation of 77.51%.

4) Influence of Prompt Settings: We conduct an ablation
study to analyze the impact of evaluation steps prompt and
rating forms prompt, as introduced in Sec. III-B. Table II
shows the correlation between different prompting strategies
with human evaluation results. From this table, it is evident that
the guidance provided by CoT in the evaluation steps is not
universally beneficial. The findings indicate its effectiveness
primarily in appraising fluency, showcasing a noteworthy
improvement of 0.98% in Kendall-Tau correlation (τ ) and

1Note that as of January 2024, the text-davinci-003 has been
upgraded to gpt-3.5-turbo-instruct. More details are referred to
OpenAI documentation: https://platform.openai.com/docs/deprecations.

Table III: Reevaluation of code summarization models with
CODERPE (with text-davinci-003), normalizing the
average scores to a range of 0% to 100%.

Model Coherence Consistency Fluency Relevance
CodeNN 24.00% 22.50% 29.50% 27.50%
Deepcom 16.50% 21.25% 18.25% 18.25%
Astattgru 36.25% 28.25% 49.75% 38.00%
Rencos 54.00% 48.50% 66.25% 51.50%
NCS 56.25% 54.75% 69.50% 58.25%
ChatGPT 89.50% 95.00% 91.75% 90.75%

1.95% in Spearman correlation (ρ). Interestingly, we find the
analyze-rate form consistently outperforms the rate-explain
form across all aspects. It is important to highlight that
employing these form-based strategies does not necessarily
result in improved performance when compared to a simplistic
score only approach, where LLMs are simply tasked with
providing a numerical score.

Answer to RQ2. While CODERPE surpasses traditional
metrics in achieving best performance for code summariza-
tion evaluation, it requires careful prompt design and the
selection of an appropriate base LLM.

E. RQ3: Re-Evaluation of Current Models

We systematically re-evaluate established code summariza-
tion models, e.g., CodeNN, Deepcom, Astattgru, Rencos, NCS,
and ChatGPT, employing LLM-based evaluators CODERPE
equipped by text-davinci-003. Our analysis utilizes the
TL-CodeSum dataset, from which we randomly choose 100
summaries for evaluation.

Table III shows the evaluation results. From this table,
we can observe a notable superiority of ChatGPT across
various dimensions, including coherence, consistency, fluency,
and relevance, as assessed by our newly proposed LLM-
based evaluators, when compared to conventional baselines.
In particular, code summaries generated by ChatGPT exhibit
a remarkable achievement of approximately 90% across all
four specified dimensions, surpassing significantly other neural
models designed for code summarization. For instance, concern-
ing coherence, ChatGPT demonstrates notable improvement
over the state-of-the-art NCS model, elevating performance
from 56.25% to 89.50%. Interestingly, this finding contrasts
with a prior research work [27], which indicated ChatGPT’s
lower performance compared to specialized code summarization
models (e.g. NCS) using BLEU, METEOR, and ROUGE-L
metrics. Our research demonstrates ChatGPT’s effectiveness
through LLM evaluators, emphasizing the importance of
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1. private void markRemovedDefaultSessionToken (String site, String token) {
2.   if (removedDefaultTokens == null) {
3.     removedDefaultTokens = new HashMap<>(<num>);
4.   }
5.   HashSet<String> removedSet = removedDefaultTokens.get(site);
6.   if (removedSet == null) {
7.     removedSet = new HashSet<>(<num>);
8.     removedDefaultTokens.put(site, removedSet);
9.   }
10.  removedSet.add(token);
11. }

CodeNN: unmarks notification session ( a name a for a supp-orted as. script site where that 
name token token name. 
Deepcom: unmarks one create particular token data data data set for request.
Astattgru: called after a given site has been updated and does nothing or a registration for 
changes.
Rencos: unmarks a default session token as removed for a particular site.
NCS: mark a default session t-oken as removed as removed.
ChatGPT: This function marks a session token as removed in a hashmap for a specific site.

Scores:4 Scores:0-1 Scores:2-3

1. public void poln(Object o) throws IOException {
2.   po(o.toString());
3.   pln();
4. }

ChatGPT: This function takes an object as input, converts it to a string, 
and prints it followed by a newline character.

1. public boolean delete() throws IOException {
2.   if (closed.compareAndSet(false, true)) {
3.     close(false);
4.     boolean success = allocatedNodesList.delete();
5.     success &= nioFile.delete();
6.     return success;
7.   }
8.   return false;
9. }

ChatGPT: This function attempts to delete a file and its associated 
resources, returning true if successful and false otherwise.

(a) Good case (b) Bad cases

1

2

Figure 8: Case studies to investigate when CODERPE works and fails.

developing robust evaluation methods for code summarization
performance assessment.

Answer to RQ3. Our proposed CODERPE shows that
ChatGPT has superior performance in code summarization
than other neural models, exhibiting a closer alignment with
human judgments.

V. DISCUSSION

A. When do LLM-based Evaluators Work and Fail?

To enhance our comprehension of the conditions under
which LLM-based evaluators succeed or encounter challenges,
we conduct an exhaustive case study, encompassing both a
good case and a case characterized by errors. In Figure 8
(a), a good case is presented, wherein both a code snippet
and its corresponding summaries generated by various neural
models are provided. In analyzing this instance, it becomes
apparent that the code summary produced by ChatGPT exhibits
notable differences compared to other summaries. However,
employing our proposed LLM-based evaluator reveals that
the code summary generated by ChatGPT attains the highest
score of 4, signifying superior quality. Upon manual inspection
of the quality of generated summaries, we acknowledge that
the summaries produced by ChatGPT exhibit superior quality
compared to those generated by other models, showcasing a
remarkable alignment with human judgments. This superiority
can be attributed to the impressive summarization capabilities
inherent in LLMs.

Moreover, we present two scenarios to illustrate instances
where LLM-based evaluators may fail to assess code sum-
marization models, as depicted in Figure 8 (b). In the first
error case, the LLM evaluator gives the consistency of the
summary a score of 4. However, from our manual inspection,
we can see a hallucination content “prints it followed by a
newline character”, which is extended from the words “po”
and “pln”. The LLM-based evaluator is unaware of the fact
that “po” and “pln” functions are defined outside the scope
of the provided code. This oversight might originate from pre-
training biases, where LLMs prematurely learned to associate

these abbreviations with common methods. In the second
error case, we can see that the code summary generated by
ChatGPT receives a score of 2, despite being deemed concise
and effective by human annotators. This could be due to the
model’s subjective interpretation of an ideal summary, leading
it to perceive the provided summary as lacking in detail.

It is important to recognize that similar subjective preferences
could be held by human evaluators as well, influencing their
judgments and introducing variability into the evaluation
process. Our work advocates for a balanced approach, where
LLM evaluation serves as a complementary tool rather than
a replacement for human evaluation. Both human and LLM
evaluation have their own strengths and weaknesses and can
be effectively combined. We encourage future researchers and
practitioners in the field of code summarization to consider the
dual use of LLM and human evaluations.

B. Implications
In this study, we have obtained several significant implica-

tions that offer valuable insights for further study.
Implication 1. Our comprehensive investigations demonstrate
that LLMs can indeed serve as effective evaluators for code
summarization, surpassing established evaluation metrics (i.e.,
BLEU-R, ROUGE-L, METEOR, and BERTScore) in their
alignment with human judgments. This can inspire our re-
search community to develop enhanced LLMs for assessing
the efficacy of code intelligence tasks, encompassing code
generation, vulnerability detection, and many others.
Implication 2. Our comprehensive ablation studies underscore
the importance of meticulous attention to designing effective
prompting strategies, careful selection of the LLM as the
backbone, and thoughtfully setting the roles for each LLM
agent. This can provide valuable insights for the research
community to enhance the design of LLMs, thereby improving
their effectiveness in evaluating code intelligence tasks.
Implication 3. Our LLM-based evaluators reveal that ChatGPT
outperforms other neural models in code summarization, provid-
ing strong evidence for the efficacy of LLMs in understanding
code and generating precise summaries.
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C. Threats to Validity

Limited Roles and Agents. In this paper, we assign distinct
roles to an LLM agent, encompassing functions as code
reviewers, original code authors, code editors, and systems
analysts in the design of prompt strategies. Additional player
roles, including software tester and software project manager,
merit further exploration. The investigation of these roles
is deferred to our future work. Furthermore, in this paper,
we initially utilize a single LLM agent to act in multiple
roles. However, recognizing the importance of multi-agent
collaboration, we encourage a multi-agent setting, where each
LLM agent serves an individual role. Within this framework, an
essential focus needs to be placed on investigating collaboration
and communication dynamics among multiple agents.
Prompt Engineering. As described in Section III-B, our LLM-
based evaluators depend on the prompts we craft. Typically,
these prompts are manually designed, necessitating substantial
human effort. This will pose a challenge to the broad applicabil-
ity of our LLM-based evaluators for diverse code intelligence
tasks, limiting their potential for effective generalization.
Limited Ground-Truth Summary. Our evaluation relies
significantly on ground-truth code summaries, which we obtain
through human annotation. In this study, we adopt prior
work [11] amassing a dataset comprising 300 code summaries.
We treat these human annotations as the ground truth for our
evaluation and recognize the need to expand the dataset in
both size and diversity of code types. Note that we do not
consider the LLMs’ prior exposure to these datasets as a source
of data leakage or bias, since the model’s evaluation focuses
on understanding the code and assessing its alignment with the
summaries, rather than generating ground-truth-like summaries.
As part of our future work, we intend to expand our assessor
pool and collect additional ground-truth summaries to enhance
the comprehensiveness of our evaluation.

VI. RELATED WORK

A. Code Summarization
Source code summarization plays a critical role in improving

program comprehension and maintenance. This task, tradition-
ally labor-intensive and time-consuming, often results in de-
scriptions that are incomplete, incorrect, or outdated [41]–[43].
Recently, deep learning-based techniques have driven the devel-
opment of automated approaches to code summarization [44]–
[48], such as DeepCom [24], NCS [26], and SIT [49], utilizing
large-scale code-summaries corpora for training generative
models to translate code into natural language summaries [1],
[2], [11], [50], [51]. Furthermore, pre-trained models have
been adapted to enhance code summarization, as evidenced in
works like CodeBERT [52] and CodeT5 [53]. More recently,
the emergence of LLMs has garnered significant interest,
prompting numerous studies to investigate its potential for
code summarization [27], [54]–[58]. For example, Su et al. [58]
investigated diverse prompting techniques, including zero-shot,
few-shot, chain-of-thought, critique, and expert methods, to
adapt LLMs for code summarization. Complementary to these
studies, this paper focuses on evaluating the quality of generated
code summaries.

B. Code Summarization Evaluation

Evaluating code summarization is challenging due to the
inherently open-ended nature of the task. Existing evaluation
approaches can be generally divided into two categories:
automatic and human evaluations. Automatic methods typically
rely on metrics such as BLEU, METEOR, and ROUGE-L to
compare generated summaries against reference summaries.
When reference summaries are unavailable, human-generated
summaries are sometimes used as benchmarks. An in-depth
analysis of these metrics, particularly BLEU, investigated
their correlation with human perception [11]. However, as
Stapleton et al. [59] argued, these metrics often focused more on
syntactic rather than semantic aspects, and did not fully capture
the impact of machine-generated code summaries on human
comprehension or productivity. Moreover, this gap is evident
in the work that highlights the limitations of these metrics
in evaluating the creative and diverse outputs from models
like ChatGPT [54]. On the other hand, human evaluations,
which entail participants’ assessment of the summarization
quality, can mitigate some of these shortcomings. However,
these evaluations are often labor-intensive and infrequently
conducted in practice.

C. Natural Language Generation Evaluators

Recently, various works have been proposed to evaluate
the capabilities of LLMs in generative tasks [13], [15], [60],
[61]. DRPE [62] introduced a roleplayer-based prompting
strategy, enabling LLMs to evaluate generated text against
golden references with human-like proficiency. Contemporary
research advocates for using LLMs as reference-free evaluators.
For instance, GEMBA [18] demonstrated the state-of-the-
art capability of GPT-based translation quality assessment.
Wang et al. [13] conducted a meta-evaluation on ChatGPT,
showcasing its reliability in various task-specific and aspect-
specific evaluations, correlating closely with human judgment.
Similarly, G-EVAL [14] employed LLMs with CoT to achieve
higher human correspondence in tasks like text summarization
and dialogue generation. Further, Chiang and Lee [15] explored
LLMs as alternatives to human evaluators, with subsequent
analysis in [16] offering guidelines for using ChatGPT as an
automatic evaluation tool. Moreover, Chan et al. [17] proposed
a framework involving multiple evaluator agents to simulate
the process of reaching consensus among human annotators.
Furthermore, the exploration of LLMs has extended into code-
related tasks. ICE-Score [20] leveraged LLMs to assess the
quality of code without the need for oracles or references,
setting a new benchmark for the evaluation of code generation.
To assess these LLM-based evaluators, Zeng et al. [19]
introduced a robust meta-evaluation benchmark for selecting
evaluators knowledgeably, while Doostmohammadi et al. [63]
delved into the reliability of automatic evaluation methods.
Furthermore, Shankar et al. [64] presented a mixed-initiative
approach to validate LLM-assisted evaluations, demonstrating
that LLM evaluation functions can indeed be aligned and
validated against human preferences, thus reinforcing the
feasibility of reliable LLM evaluation.
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VII. CONCLUSION

In this paper, we have explored the capability of LLMs to
evaluate code summarization models. We propose CODERPE,
a novel LLM-based metric for assessing the quality of code
summaries in four dimensions: coherence, consistency, fluency,
and relevance. Particularly, we focus on the role-playing ability
of LLMs, simulating various personas such as code reviewers,
original code authors, code editors, and systems analysts.
Moreover, we investigate the effects of prompt strategies and
assess the robustness of the metrics. Experimental results reveal
that our approach aligns more closely with human evaluations,
presenting a promising alternative to traditional metrics.
Data Availability. All the source code and experi-
mental data referenced in this paper can be accessed
at: https://github.com/CGCL-codes/naturalcc/
tree/main/examples/CodeSum-Eval [65].
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